
INFORME FINAL PREVIOZONO 2008

PROGRAMA ESPECIAL DE VIGILANCIA DE LAS CONCENTRACIONES DE OZONO TROPOSFÉRICO EN LA COMUNIDAD VALENCIANA

César Azorín Molina Núria Castell i Balaguer Enrique Mantilla Iglesias

Fundación Centro de Estudios Ambientales del Mediterráneo

Trabajo preparado por la Fundación CEAM para la Conselleria de Medi Ambient, Aigua, Urbanisme i Habitatge de la Generalitat Valenciana

Índice

1. introducción	- 5 -
1.1. Objetivos.	- 6 -
1.2. Contenido	- 6 -
1.3. ESTRUCTURA DEL INFORME	-9-
2. desarrollo y datos utilizados	- 10 -
2.1. Alcance y metodología	- 10 -
2.1.1. Personal	- 11 -
2.2. Datos utilizados.	- 12 -
2.2.1. Red de Calidad Ambiental de la Comunidad Valenciana	
2.3. DESCRIPCIÓN DE LAS HERRAMIENTAS	- 18 -
2.3.1. Procesamiento de datos	- 19 -
3. ANÁLISIS DE LOS NIVELES DE CONCENTRACIÓN DE OZONO	- 22-
3.1. Recuperación de datos de ozono	- 22 -
3.2. Estadística descriptiva.	- 24 -

3.3. Caracterización estadística de estaciones	29 -
3.3.1. Estadística referida a la normativa	34 -
4. análisis de las jornadas con superación d umbral de información	
4.1. HISTORIAL DE SUPERACIONES EN LAS ESTACIONES DE LA RVVCCA	- 40 -
4.2. JORNADA DEL 26 DE JUNIO DE 2008.	42 –
4.3. JORNADA DEL 1 DE JULIO DE 2008	42 –
4.4. JORNADA DEL 18 DE JULIO DE 2008	43 –
5. CONCLUSIONES	54 -
5.1. LÍNEAS FUTURAS	54 -
6. AGRADECIMIENTOS	56 -
BIBLIOGRAFÍA	57 -

1. INTRODUCCIÓN

La molécula de ozono es una forma alotrópica compuesta por tres átomos de oxígeno (O₃). En la troposfera se produce a través de complejas reacciones químicas, en presencia de luz solar, a partir de los óxidos de nitrógeno (NOx, de origen principalmente antropogénico) y los compuestos orgánicos volátiles (COV, debidos a la actividad humana y a la vegetación). En consecuencia, el ozono se define como un contaminante secundario no emitido por ninguna fuente de forma directa.

El ozono se presenta en dos capas de la atmósfera, la estratosfera (~12-50 km sobre el suelo) y la troposfera (~0-12 km sobre el suelo). El ozono estratosférico, más conocido con el nombre de capa de ozono u ozonosfera (~20 km), actúa como filtro atrapando la radiación ultravioleta (rayos UV) de onda corta, que es nociva para la vida en la Tierra. En cambio, el ozono troposférico, principalmente el que se encuentra más próximo a la superficie, es un contaminante cuando alcanza ciertas concentraciones, siendo un compuesto potencialmente peligroso debido a su elevada capacidad oxidante.

Sus efectos nocivos sobre la salud humana incluyen la irritación en el aparato respiratorio y los tejidos, con especial incidencia en grupos sensibles, niños, ancianos y personas con problemas respiratorios. En la vegetación puede afectar al crecimiento y fisiología de la vegetación, causando daños foliares y reducción en las cosechas y producción de semillas, pudiendo desembocar en alteraciones en el propio funcionamiento de los ecosistemas cuando aparece en elevadas concentraciones. En los materiales su elevado poder corrosivo, potencia los procesos de oxidación y envejecimiento.

Algunos estudios han estimado que las concentraciones de ozono troposférico son en la actualidad entre tres y cuatro veces superiores a las de época preindustrial, como resultado del incremento de emisiones de óxidos de nitrógeno por causa del tráfico rodado y la industria. En latitudes medias, como es el caso del área mediterránea y la Comunidad Valenciana, las mayores concentraciones de ozono tienen lugar durante la época cálida del año, es decir, aquella que transcurre entre mayo y septiembre. Esto se debe a un escenario meteorológico dominado por una circulación anticiclónica, condiciones de estabilidad atmosférica, escasez de nubosidad, elevada fracción de insolación y mayores niveles de radiación UV, temperaturas elevadas y circulaciones locales en régimen de brisas marinas, elementos atmosféricos que son proclives a una elevada reacción fotoquímica y, por ende, a la concentración del ozono troposférico. A ello se une un alto nivel de industrialización y una fuerte presión automovilística.

La normativa comunitaria sobre contaminación por ozono obliga a los estados miembros a realizar medidas periódicas de los niveles de concentración de ozono, con el fin de informar a la población de la superación de los umbrales legales establecidos en la Directiva 2002/3/CE (transpuesta en España a través del Real Decreto 1796/2003 del 26 de Diciembre) y actualizada en la Directiva 2008/50/CE, estimando con antelación la evolución de dicho contaminante en las situaciones de concentraciones elevadas.

El correcto cumplimiento de la normativa requiere tanto el diagnóstico de la distribución espacial de los niveles de contaminación, que se están registrando en cada momento, como un pronóstico a corto plazo de su evolución previsible. Con tales objetivos especificados en los mandatos de las Directivas, en la Comunidad Valenciana, la Conselleria de Medi Ambient, Aigua, Urbanisme i Habitatge de la Generalitat Valenciana, con el apoyo técnico de la Fundación CEAM, puso en marcha en el año 1999 el Programa Previozono.

1.1. Objetivos

El objetivo general del Programa Previozono es doble, y se resume en los siguientes apartados:

- Dar cobertura a los requerimientos en materia de información a la población, a través del seguimiento y vigilancia diaria de los niveles de concentración de ozono troposférico en la Red Valenciana de Vigilancia y Control de la Contaminación Atmosférica (RVVCCA).
- Profundizar en el conocimiento y caracterización de la contaminación por ozono en la Comunidad Valenciana.

Ambos objetivos se encuentran relacionados de forma sinérgica, puesto que el avance en el conocimiento sobre la dinámica del ozono se traduce en una mejora en la información ofrecida a la población.

1.2. Contenido

El programa de vigilancia Previozono 2008, en lo referente a su desarrollo técnico y de información a la población, siguió un cronograma de trabajo similar al realizado durante los años anteriores. Así, se elaboró un informe diario durante los meses de mayor probabilidad de superación de los umbrales de referencia (de mayo a septiembre), con un contenido relativo a:

- Resumen de los valores de concentración de ozono en las 24 horas anteriores.
- Valoración y/o previsión de los niveles de concentración registrados en función de las condiciones meteorológicas ocurridas.
- Estimación de la evolución esperable de las concentraciones para la siguiente jornada, con las correspondientes recomendaciones en caso de superación de los valores umbrales de información y alerta a la población.

En la página web (http://www.cma.gva.es/previozono) se puede consultar la información generada durante el programa de vigilancia 2008 además del informe diario correspondiente.

En caso de superación del umbral de información o de alerta en alguna cabina de las que componen RVVCCA se procede a la realización de un informe específico de la superación, donde siguiendo los requerimientos normativos se indica la hora, concentración registrada, duración y lugar de ocurrencia, además de detallar las condiciones meteorológicas dominantes durante la jornada y una previsión para el día siguiente. El contenido de este informe es remitido mediante un correo electrónico al Centro de Emergencias, con copia a la Conselleria de Medi Ambient, Aigua, Urbanisme i Habitatge.

Por último, una vez dado el aviso de la superación del umbral de información y/o alerta se activa el protocolo de envío de mensajes SMS a teléfonos móviles, mediante el cual se informa de la cabina en la que se ha producido la superación, la concentración alcanzada y la duración temporal de la ocurrencia, al conjunto de personas subscritas a dicho servicio ofrecido por la Conselleria de Medi Ambient, Aigua, Urbanisme i Habitatge de la Generalitat Valenciana.

La información relativa al programa de vigilancia de los niveles de concentración de ozono troposférico en la Comunidad Valenciana está disponible en el portal del Programa Previozono, http://www.cma.gva.es/previozono, dividida en los siguientes ocho bloques principales:

- (1) *Informe diario*: De mayo a septiembre, meses con mayor probabilidad de alcanzar valores elevados de concentración de ozono, se actualiza a diario un informe con el siguiente contenido:
 - Resumen de los valores de concentración de ozono en las 24 horas anteriores.
 - Diagnóstico de la situación general ocurrida en relación a los niveles de concentración registrados.
 - Previsión de la evolución esperable de las concentraciones para la jornada siguiente.
 - Resumen detallado sobre las condiciones meteorológicas y de evolución de las concentraciones de ozono más destacadas.
 - Recomendaciones atendiendo a los niveles de concentración esperables.

En los meses periféricos, marzo, abril y octubre, se realiza una vigilancia de la evolución de los niveles de concentración de ozono, actualizándose diariamente la información referida a la superación o no de los umbrales legislados. Además, en caso de que ocurra o exista previsión de superación del umbral de información o alerta se procede a la elaboración de un informe similar al del periodo intensivo.

Al concluir el periodo de vigilancia se pone a disposición del público un resumen estadístico, en el que se presenta el cálculo de parámetros estadísticos descriptivos (máximos, medias y desviación típica) y gráficas explicativas relativas al comportamiento de los niveles de concentración de ozono en cada una de las estaciones de medida.

- (2) Información complementaria. En esta sección se muestra información correspondiente a las concentraciones de ozono medidas en las estaciones de la RVVCCA durante la jornada de vigilancia. En ella se presenta gráficamente la evolución de algunas magnitudes con objeto de valorar el comportamiento diario de los niveles de concentración de ozono en la Comunidad Valenciana. Esta información gráfica se refiere a:
 - Valores máximos horarios
 - Concentración media
 - Diferencia entre el máximo y mínimo (rango)
 - Diferencia entre los valores máximos y medios de la jornada de vigilancia actual respecto a los registrados en la jornada anterior
 - Valoración de las concentraciones de ozono relativas a las normales durante el mes en curso (calculadas como el promedio mensual en los años anteriores)
- (3) *Informes pasados*. Conjunto de informes diarios anteriores realizados durante la campaña de vigilancia.
- (4) Superaciones. Registro de las superaciones del umbral de información y/o alerta a la población en las estaciones de la RVVCCA, tanto durante el programa en curso como en periodos de vigilancia pasados. Se puede acceder al contenido del informe enviado a Protección Civil en el que se detallan las características del episodio (análisis meteorológico, duración, etc.). También se encuentra en esta sección una tabla en la que se muestran el número de superaciones del umbral de protección a la salud durante el año en curso.
- (5) Publicaciones. Sección en la que pueden consultarse las noticias aparecidas en prensa relacionadas con el Programa Previozono o la contaminación por ozono en la Comunidad Valenciana. Además se encuentran disponibles los informes que al finalizar cada campaña prepara la Fundación CEAM para la Conselleria de Medi Ambient, Aigua, Urbanisme i Habitatge, así como artículos de divulgación y/o científicos.
- **(6)** *Legislación*. Legislación vigente referente a las directivas promulgadas por la Unión Europea, y por el Estado Español.

- (7) *Zonificación*. Descripción de la Red Valenciana de Vigilancia y Control de la Contaminación Atmosférica, y de la zonificación de la Comunidad Valenciana.
- (8) El ozono. Preguntas más frecuentes relativas a este contaminante atmosférico.

1.3. Estructura del informe

A continuación se resumen los contenidos de las siguientes secciones que conforman el informe del Programa Previozono 2008:

- Desarrollo y datos utilizados: Metodología y datos utilizados durante la ejecución del presente programa de vigilancia. Breve descripción de las herramientas desarrolladas y utilizadas durante el presente ejercicio del Previozono para facilitar el procesamiento de los datos de la Red Valenciana de Vigilancia y Control de la Contaminación Atmosférica (visualización, depuración, cálculos estadísticos, etc.).
- Análisis de los niveles de concentración de ozono: Análisis de los niveles de concentración de ozono en el periodo de marzo a octubre del 2008. En esta sección se incluye la estadística relativa a la disponibilidad de datos diezminutales en las diferentes estaciones de la red, así como la estadística descriptiva de cada cabina y la referida a la normativa.
- **Análisis de las jornadas con superación del umbral de información**: Estudio de las jornadas en las que se superó el umbral de información, analizando la situación meteorológica.

Conclusiones: Conclusiones relativas al ejercicio del Programa Previozono 2008, y líneas futuras a medio y largo plazo.

Agradecimientos

Bibliografía

2. DESARROLLO Y DATOS UTILIZADOS

En esta sección se describe la metodología empleada en el desarrollo diario del Programa Previozono 2008, así como las herramientas y los datos utilizados.

2.1. Alcance y metodología

Durante el periodo temporal de realización del Programa Previozono 2008 (marzo-octubre) se siguieron las mismas directrices que en las campañas anteriores.

El periodo de vigilancia se dividió en dos etapas, la vigilancia intensiva abarcó los meses centrales (mayo-septiembre) y la vigilancia laxa, los meses periféricos (marzo, abril y octubre). Esta división se realizó atendiendo a la menor o mayor probabilidad de registrarse superaciones de los umbrales de concentración de ozono legislados. Esta probabilidad es mayor durante la etapa principal ante el predominio de situaciones de estabilidad meteorológica y de condiciones favorables a una elevada formación fotoquímica de ozono y a una escasa renovación de la masa aérea, aunque no se considera despreciable la probabilidad de ocurrencia durante los meses periféricos.

En ambas etapas, tanto durante el periodo central como en el periférico, en caso de producirse niveles de concentración de ozono por encima del valor umbral de información o de alerta se elabora un informe detallando las características del episodio. Este informe se remite, con la mayor celeridad posible, al Centro de Emergencias de la Comunidad Valenciana para que se distribuya a través de los canales adecuados. A continuación se activa el servicio de información vía SMS a los usuarios dados de alta en el mismo.

La información diaria referente a los niveles de concentración de ozono y a las superaciones registradas está ubicada en una página web dedicada al Programa Previozono dentro del servidor de la Conselleria de Medi Ambient, Aigua, Urbanisme i Habitatge (http://www.cma.gva.es/previozono). Esta web varía su contenido dependiendo del periodo de vigilancia en el que se encuentre el programa. Durante el periodo central se actualiza diariamente la siguiente información:

(a) *Informe diario*

• Los datos de los promedios de 24 horas (de 16 a 16h UTC) y de los máximos de los promedios horarios entre las 00h y las 16h UTC, así como de los máximos de los promedios octohorarios durante el mismo periodo temporal para cada una de las estaciones de la RVVCCA.

- Un análisis de lo ocurrido durante la anterior jornada de vigilancia, tanto en lo referente a la evolución de los niveles de ozono, como en las condiciones meteorológicas.
- Un mapa sinóptico con la predicción de la situación atmosférica prevista a las 12h UTC, según el modelo HIRLAM de la Agencia Estatal de Meteorología (AEMET).
- La predicción de la evolución cualitativa de los niveles de ozono y de la situación meteorológica durante la siguiente jornada de vigilancia.
- Un mapa de la zonificación preestablecida de la Comunidad Valenciana, sobre el que se actualiza la probabilidad de superación del umbral de información en cada una de las zonas.
- Una síntesis, breve y concreta, en la que se incluyen los aspectos más relevantes de la predicción.
- Las recomendaciones recogidas en el Real Decreto 1494/1995, en el caso de que se prevea la superación del umbral de información.

(b) Información complementaria compuesta por gráficas

- Gráfica 1: Muestra las concentraciones medias y máximas horarias durante la jornada de vigilancia
- Gráfica 2: Se presenta el rango de valores (diferencia entre el valor máximo y mínimo) de los niveles de concentración de ozono durante la jornada de vigilancia.
- Gráfica 3: Se presentan las diferencias entre los valores medios y máximos de la jornada de vigilancia, con los alcanzados en la jornada anterior.
- Gráfica 4: Muestra la diferencia porcentual entre los valores medio diario y máximo horario respecto a las correspondientes medias mensuales normales calculadas para cada estación.
- Gráfica 5: Se presenta un mapa de la zonificación preestablecida de la Comunidad Valenciana, actualizándose diariamente la probabilidad de superación de los umbrales designados por la normativa vigente en cada una de las zonas.

El contenido de la página durante los meses de marzo, abril y octubre se modifica atendiendo a la menor probabilidad de producirse superaciones del umbral de información. Por este motivo, durante estos tres meses se actualiza la página centrándose en proporcionar una visión general sobre la evolución de los niveles de concentración y en notificar posibles superaciones en cualquiera de las cabinas de la RVVCCA.

2.1.1. Personal. La responsabilidad de la vigilancia del comportamiento de los niveles de ozono y la elaboración del informe diario recayó, durante la vigencia del Programa de Vigilancia Previozono 2008, en el personal de la Fundación CEAM: Núria Castell, Enrique Mantilla y César Azorín, además del personal cualificado de la

Conselleria de Medi Ambient, Aigua, Urbanisme i Habitatge: José Vicente Miró, Rafael Orts, Lucía Juan, Miguel Poquet y Mercedes Tomás.

2.2. Datos utilizados

Para el cumplimiento del objetivo de información a la población se utilizó la información en superficie ofrecida por la Red Valenciana de Vigilancia y Control de la Contaminación Atmosférica y por la red de torres meteorológicas perteneciente a la Fundación CEAM, e información meteorológica confeccionada, tanto por la Agencia Estatal de Meteorología (AEMET) como por el Instituto Británico de Meteorología (Met Office), relativa a mapas de presión atmosférica en superficie y en altura, así como información elaborada por el departamento de meteorología del CEAM (CEAMET; http://www.gva.es/ceamet/).

2.2.1. Red de Calidad Ambiental de la Comunidad Valenciana. La medida y adquisición de los niveles de concentración de ozono, entre otros contaminantes y variables meteorológicas, se lleva a cabo mediante la Red Valenciana de Vigilancia y Control de la Contaminación Atmosférica, propiedad de la Generalitat Valenciana.

En la actualidad la RVVCCA cuenta con 42 emplazamientos dotados con analizadores automáticos que proporcionan promedios diezminutales de la concentración de ozono.

En la tabla 1 se describen los sensores de los que consta cada una de las estaciones, y en la figura 1 se muestra su distribución espacial.

Figura 1: Estaciones de la Red Valenciana de Vigilancia y Control de la Contaminación Atmosférica (RVVCCA) de la Comunidad Valenciana utilizadas durante la campaña Previozono 2008

Tabla 1: Sensores en funcionamiento en cada una de las cabinas que componen la RVVCCA utilizadas en el Previozono 2008. "Meteo" equivale a disponer de medidas de velocidad y dirección del viento, radiación neta, precipitación, temperatura, presión, y humedad relativa

ESTACIÓN	SO2	CO	NO	NO2	NOx	O3	PST	CH4	HNM	Meteo
Zorita	Χ		Х	X	X	Χ				X
Coratxar	Χ		Χ	Χ	Χ	Χ	Χ			Χ
Morella	Χ		Х	X	X	Χ				X
Vallibona	Χ		Χ	Χ	Χ	Χ				Χ
Vilafranca	Х		Х	X	X	Χ	Х			X
Sant Jordi	Χ		Χ	Χ	Χ	Χ				Χ
T.Endomenech	Χ	Х	Х	Χ	X	Χ				X
Cirat		Χ	Χ	Χ		Χ				X
Alcora	Χ	Х	X	Χ	Χ	Χ				
Onda	Χ		Χ	Χ	Χ	Χ	Χ			X
Peñeta	Χ		Х	Χ	Χ	Χ	Χ			X
Patronat d'Esports	Χ	Χ	Χ	Χ	Χ	Χ				Χ
Grao	Χ	Х	Х	Χ	X	Χ	Χ			X
Ermita	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
Burriana	Χ	Х	Х	X	X	Χ				X
Viver	Χ	Χ	Χ	Χ	Χ	Χ				
Sagunt-Nord	Χ	Х	Х	Χ	X	Χ	Χ			
Port de Sagunt	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	X	X
Villar Arzobispo	Χ	Х	Х	Χ	X	Χ				X
L'Eliana		Χ	Χ	Χ		Χ				Χ
Facultats	Χ	Х	Х	Χ	Χ	Χ	Χ			X
Paterna-Ceam	Χ	Χ	Χ	Χ	Χ	Χ	Χ			
Quart de Poblet	Χ	X	Х	Χ	Χ	Χ	Χ			
Viveros	Χ	Χ	Χ	Χ	Χ	Χ	Χ			
N.Centro	Χ	X	Х	Χ	Χ	Χ	Χ			
Aragón / Politécnic	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	X	
Linares	Χ	Χ	Χ	Χ	Χ	Χ	Χ			
Pista de Silla	Χ	Χ	Χ	Χ	Χ	Χ	Χ			X
Caudete	Χ	Χ	Χ	Χ	Χ	Χ				Χ
Alzira	Χ	Χ	Χ	Χ	Χ	Χ				X
Ontinyent		Χ	Χ	Χ		Χ				Χ
Verge	Χ	Χ	Χ	Χ	Χ	Χ	Χ			
Benigánim		Χ	Χ	Χ		Χ				Χ
Gandía	Χ	Χ	Χ	Χ	Χ	Χ	Χ			
Benidorm	Χ	Χ	Χ	Χ	Χ	Χ	Χ			
Monover	Χ	Χ	Χ	Χ	Χ	Χ				X
RENFE / Florida	Χ	Χ	Χ	Χ	Χ	Χ	Χ			X
El Pla	Χ	Χ	Χ	Χ	Χ	Χ	Χ			
San Vicente	Χ					Χ				
Elx2	Χ	Χ	Χ	Χ	Χ	Χ	Χ			
Agroalimentari	Χ	Χ	Χ	Χ	Χ	Χ	Χ			X
Orihuela		Χ	Χ	Χ		Χ				X
Ormueia		Λ	Χ	Λ		Χ				Λ

(a) Especificaciones del sensor de ozono

A continuación se describen brevemente las especificaciones técnicas del sensor de ozono utilizado en la RVVCCA. Para mayor información sobre éste y el resto de sensores puede consultarse la página web del fabricante (http://www.dasibi.com) o la página web de la empresa suministradora (http://www.sirsa.es).

El modelo utilizado en la totalidad de las estaciones de la Red Valenciana de Vigilancia y Control de la Contaminación Atmosférica es el DASIBI 1008-RS. Las medidas se realizan en continuo, de acuerdo a la tecnología estándar de absorción ultravioleta, que sigue los criterios establecidos por la *U.S. Environmental Protection Agency* (U.S. EPA) y por la ISO 13964 (1998). En la tabla 2 se muestran las especificaciones técnicas del analizador de ozono.

Tabla 2: Descripción técnica del analizador de ozono

Analizador de ozono										
Margen de medida	0-1000ppb (0-2000 μg/m3)									
Precisión	1 ppb (2 μg/m3)									
Límite detección	1 ppb (2 μg/m3)									
Margen temperatura	0 – 45 °C									
Tiempo de respuesta:										
Manual	2 minutos									
Automático	5-10 minutos									

Las mediciones son almacenadas por el sistema de adquisición de datos en promedios diezminutales, siendo ésta la mayor resolución temporal a la que se puede acceder.

(b) Tipos de emplazamiento

Las cabinas que componen la RVVCCA presentan características diferentes en respuesta a la compleja orografía de la Comunidad Valenciana. En la tabla 3 se muestra una clasificación de las cabinas, desarrollada atendiendo a la recogida en la *European Topic Centre on Air and Climate Change* (ETC/ACC), considerada como estándar para el intercambio de información dentro de la Unión Europea (tabla 4). También se recoge en esta tabla la posición relativa de los emplazamientos dentro de las cuencas aéreas del entorno mediterráneo (tabla 5).

Tabla 3: Clasificación de las estaciones de la Red Valenciana de Vigilancia y Control de la Contaminación Atmosférica atendiendo a las clasificaciones establecidas en las tablas 4 y 5

ESTACIONES	Nivel 1	Nivel 2	Nivel 3	Nivel 4
Zorita	Rural	Fondo	Res	VI
Coratxar	Rural	Industrial	Natural	AI
Morella	Rural	Industrial	Natural	AI
Vallibona	Rural	Industrial	Natural	AI
Vilafranca	Rural	Industrial	Agr	VI
Sant Jordi	Rural	Fondo	Agr	C
T.Endomenech	Rural	Fondo	Res	С
Cirat	Rural	Fondo	Res	AI
Alcora	Urbana	Fondo	Industrial	AI
Onda	Suburbana	Industrial	Res-Ind	ME
Peñeta	Suburbano	Industrial	Res-Ind	AC
Patronat d'Esports	Urbana	Tráfico	Res	C
Grao	Suburbana	Industrial	Res-Ind	C
Ermita	Rural	Industrial	Agr	С
Burriana	Rural	Fondo	Industrial	С
Viver	Rural	Fondo	Res	AI
Sagunt-Nord	Suburbana	Fondo	Res	С
Port de Sagunt	Urbana	Tráfico	Res-Ind	C
Villar Arzobispo	Suburbana	Fondo	Res	AI
L'Eliana	Suburbana	Fondo	Res	ME
Facultats	Urbana	Tráfico	Res	С
Paterna-Ceam	Suburbana	Tráfico	Res	C
Quart de Poblet	Urbana	Tráfico	Res-Ind	С
Viveros	Suburbana	Fondo	Res	С
N.Centro	Urbana	Tráfico	Res-Com	С
Aragón / Politécnic	Urbana	Tráfico	Res	C
Linares	Urbana	Tráfico	Res-Com	C
Pista de Silla	Urbana	Tráfico	Res	C
Caudete	Rural	Fondo	Res	ME
Alzira	Rural	Fondo	Res-Ind	C
Ontinyent	Rural	Fondo	Res	AI
Verge	Urbana	Tráfico	Res	VI
Benigánim	Suburbana	Fondo	Res	ME
Gandía	Suburbana	Fondo	Res	C
Benidorm	Suburbana	Fondo	Res	С
Monover	Suburbana	Industrial	Ind	AI
RENFE / Florida	Urbana	Tráfico	Res-Com-Ind	С
El Pla	Urbana	Fondo	Res-Com	C
San Vicente	Urbana	Industrial	Res-Ind	ME
Elx2	Urbana	Tráfico	Res	C
Agroalimentari	Suburbana	Industrial	Ind	С
Orihuela	Suburbana	Fondo	Res-Com	C

Tabla 4: Clasificación de tipos de emplazamientos establecidos en la Decisión del Consejo 97/101/CEE para el intercambio de información

Nivel 1	Según el grado de urbanización del entorno próximo
Urbano	Zona totalmente urbanizada, con excepción de los parques urbanos.
Suburbano	Zona en parte urbanizada mezclada con áreas no urbanizadas.
Rural	Las que no son urbanas ni suburbanas.
Nivel 2	Según el origen de las concentraciones
Tráfico	Concentraciones determinadas por emisiones de tráfico rodado en sus inmediaciones.
Industrial	Influidas significativamente por emisiones cercanas de fuentes industriales o áreas industriales con muchas fuentes.
Fondo	Estaciones ubicadas de manera que el nivel de contaminación medido no está significativamente y directamente influenciado por las emisiones de una fuente puntual identificable, pero sí de forma indirecta debido al régimen de vientos.
Nivel 3	Según la actividad dominante en el entorno inmediato
Residencial	
Industrial	
Comercial	
Agrícola	
Natural	

Tabla 5: Posición relativa de los emplazamientos dentro de un escenario típico, identificable en las cuencas aéreas del entorno mediterráneo

Nivel 4	Según la posición relativa en la cuenca aérea mediterránea
AI	Altura en el interior.
VI	Fondo de valle en el interior.
ME	Media elevación en distancias intermedias entre la costa y el interior.
AC	Costa en altura.
C	Costa a nivel del mar.

(c) Control de calidad de los datos

Este proceso consta de dos niveles, dando como resultado final el conjunto de datos a partir de los cuales se realiza el informe diario.

- El primer nivel se realiza de forma automática y en tiempo real por el Sistema de Adquisición de Datos (SAD). En este nivel se filtran los datos erróneos debidos a autocalibración o a un funcionamiento anómalo del equipo.
- El segundo control, realizado por personal de la Fundación CEAM, es manual y consiste en la visualización de las series de datos con el fin de detectar posibles anomalías.
- 2.2.2. Información meteorológica. Tal y como se ha comentado en la introducción, el ozono es un contaminante fotoquímico secundario cuyos precursores principales son los óxidos de nitrógeno y los compuestos orgánicos volátiles. Sin embargo, el ozono troposférico no sólo se forma en las áreas de emisión de precursores, sino que su formación se da también en una escala regional. Por este motivo se requiere del estudio de las condiciones de dispersión -suma de los fenómenos de transporte y difusión- de las masas aéreas, con el fin de evaluar la distribución de los niveles de ozono en la Comunidad Valenciana.

A la hora de analizar y predecir el comportamiento de los niveles de concentración es necesario tener como referencia la información meteorológica. Para ello se utilizan diferentes modelos de predicción a escala sinóptica, además de información referente a imágenes satelitales a escala continental e información en superficie proporcionada por la red de torres meteorológicas del CEAM a escala local.

2.3. Descripción de herramientas

El personal de la Fundación CEAM tiene a su disposición diferentes herramientas, desarrolladas por el personal científico o suministradas por la Conselleria de Medi Ambient, Aigua, Urbanisme i Habitatge, con el fin de agilizar el procesamiento de datos de la Red Valenciana de Vigilancia y Control de la Contaminación Atmosférica (visualización, depuración, cálculos estadísticos, etc.) y la distribución a la población (página web, envío de mensajes informando de superaciones del umbral de información, etc.).

2.3.1. Procesamiento de datos. El procesamiento de los datos dentro del Programa Previozono se divide en cuatro fases, realizadas a través de programas específicos.

- Bajada de datos: Exportación de los datos acumulados en la Conselleria de Medi Ambient, Aigua, Urbanisme i Habitatge. Se realizan cuatro bajadas diarias para controlar la evolución de los niveles de concentración de ozono, siendo a las 18h cuando se realiza la última bajada antes de la elaboración del informe.
- *Control de calidad*: Visualización de la serie temporal de concentración de ozono en cada cabina y eliminación manual de valores erróneos.
- Cálculo de estadísticos: Obtención de los parámetros estadísticos a partir de las series temporales validadas.
- Representación gráfica: Elaboración de las gráficas concernientes a la información complementaria.
- 2.3.2. Página web. El contenido de la página web está desarrollado en el apartado 1, donde se comenta toda la información disponible en el portal.

En la figura 2 se muestra el aspecto de la página destinada al Programa Previozono, a la cual se puede acceder desde un enlace en el portal de la Conselleria de Medi Ambient, Aigua, Urbanisme i Habitatge de la Generalitat Valenciana (http://www.cma.gva.es) o directamente desde http://www.cma.gva.es) o directamente desde http://www.cma.gva.es) o directamente desde http://www.cma.gva.es) previozono .

2.3.3. Envío de mensajes en caso de superación del umbral de información. Atendiendo al objetivo de información a la población sobre la calidad del aire, la Conselleria de Medi Ambient, Aigua, Urbanisme i Habitatge, a través de la Dirección General de Calidad Ambiental, dispone de un servicio de mensajería a móviles, con posible suscripción mediante el envío de un SMS con la palabra OZONO al nº 5110, que permite estar informado a través de un mensaje de teléfono móvil de todas las superaciones del Umbral de Información o de Alerta del Ozono Troposférico que ocurran durante el periodo del Programa Previozono en cualquier estación de la Comunidad Valenciana.

El mensaje a recibir consiste en un envío de la Conselleria de Medi Ambient, Aigua, Urbanisme i Habitatge informando en qué estación de la RVVCCA ha ocurrido la superación del umbral de ozono, e incluyendo la hora y fecha de dicha superación, así como la concentración alcanzada, se recuerda también la dirección de la página web del Previozono, donde puede consultarse información más detallada.

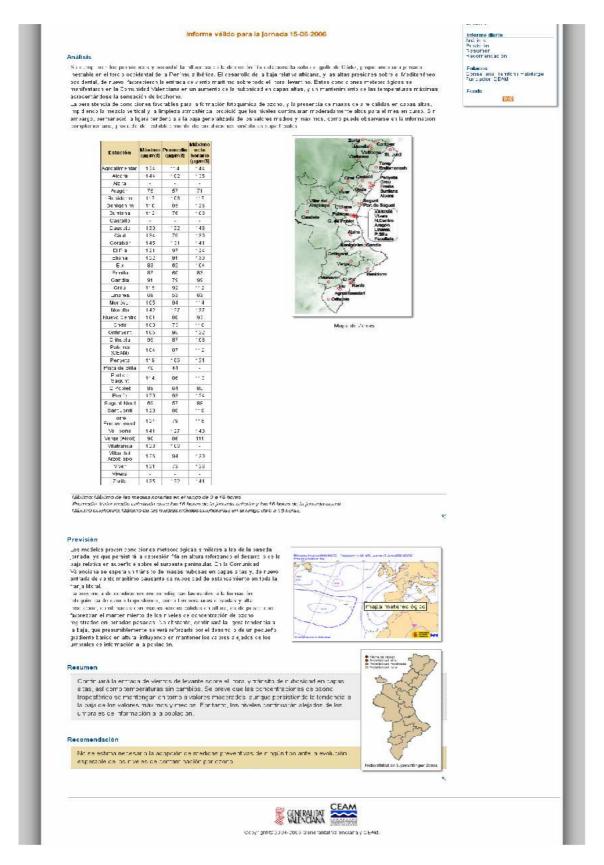


Figura 2a: Aspecto del informe diario consultable a través de la página web dedicada al Programa Previozono

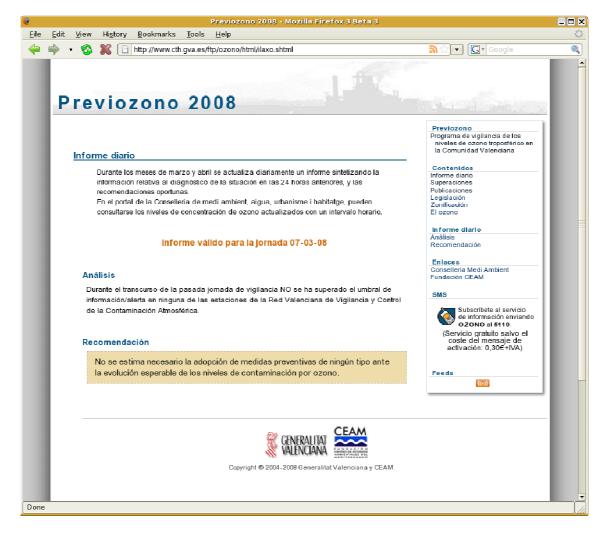


Figura 2b: Página de información sobre los niveles de ozono durante el periodo laxo (marzo, abril y octubre). Consultable a través de la página web dedicada al Programa Previozono

3. ANÁLISIS ESTADÍSTICO DE LOS NIVELES DE CONCENTRACIÓN DE OZONO

En este apartado se detalla la estadística de los datos de ozono registrados en la Red Valenciana de Vigilancia y Control de la Contaminación Atmosférica durante la campaña Previozono 2008. La sección se divide en tres apartados principales:

- Recuperación de datos válidos de ozono
- Estadística descriptiva
- Estadística referida a la normativa

3.1. Recuperación de datos de ozono

La recuperación de datos de ozono se refiere al porcentaje de medidas horarias de concentración utilizadas en la elaboración del informe. Se trata, por tanto, de una medida de la cobertura espacio-temporal de las concentraciones de ozono proporcionada por los monitores automáticos de captación de las estaciones de control de la contaminación atmosférica.

Tal y como recoge el Real Decreto 1796/2003 se requiere un porcentaje mínimo de valores para iniciar el cálculo estadístico. Al tomar la serie temporal de valores medios horarios como punto de partida a la hora de realizar los cálculos posteriores, se especifica que se debe disponer de un mínimo de 75% (45 minutos) de datos diezminutales suministrados por las cabinas. Teniendo en cuenta esta restricción, la tabla 6 muestra el porcentaje de valores horarios disponibles para el cálculo de las series temporales derivadas. Puede extraerse de la observación de la tabla que se dispone de una cobertura temporal y espacial de la evolución de las concentraciones de ozono durante los meses de marzo a octubre aceptable. Sin embargo, existen periodos temporales durante los cuales el número de valores horarios es menor que el requerido, por lo que la estadística es poco significativa. Esta ausencia de datos en las diversas estaciones puede deberse, entre otros motivos a:

- Averías en las comunicaciones.
- Caídas del suministro eléctrico.
- Problemas asociados a la superposición de señales de ruido sobre los datos registrados.
- Desplazamientos de líneas base.

Tabla 6. Porcentaje mensual y total (marzo-octubre) de medias horarias válidas durante el periodo Previozono 2008

Estación	Mar.	Abr.	May.	Jun.	Jul.	Ago.	Sep.	Oct.	Total
Zorita	99	100	99	95	95	87	100	100	97
Coratxar	77	70	51	77	65	99	100	100	80
Morella	36	99	99	100	100	100	100	100	92
Vallibona	100	100	99	99	100	100	75	91	96
Vilafranca	100	100	100	100	39	98	100	100	92
Sant Jordi	72	100	99	100	100	100	100	92	95
T. Endomenech	73	99	97	100	99	63	72	89	86
Cirat	100	100	99	83	100	99	94	100	97
Alcora2	100	80	91	83	82	100	90	84	89
Onda	100	100	94	90	99	99	100	100	98
Penyeta	100	99	88	95	81	17	100	100	85
Patronat d'Esports	85	80	98	82	99	82	72	93	86
Grao	100	98	100	100	100	100	100	78	97
Ermita	100	100	100	99	99	100	88	100	98
Burriana	100	100	100	100	40	100	71	98	88
Viver	94	89	72	96	97	95	100	100	93
Sagunt	99	82	5	89	99	74	100	99	81
Port de Sagunt	100	100	97	63	96	99	100	99	94
Villar del Arzobispo	100	100	99	100	97	100	100	80	97
L'Eliana	69	100	98	100	100	90	8	0	71
Paterna – CEAM	80	99	56	84	45	69	94	100	78
Facultats	100	99	100	99	56	0	38	99	74
Quart de Poblet	46	0	0	65	26	53	97	83	46
Viveros	100	100	99	100	0	8	100	99	76
Nuevo Centro	96	97	100	87	0	12	100	99	74
Aragón	43	0	0	0	0	0	0	0	5
Politécnic	0	88	98	100	99	57	100	99	80
Linares	100	99	99	100	100	96	98	96	99
Pista de Silla	100	3	0	35	74	68	93	61	54
Caudete	42	100	100	100	99	100	100	100	93
Alzira	100	100	100	100	96	92	89	99	97
Ontinyent	97	100	99	99	99	99	68	86	94
Verge del Lliris	91	95	97	79	0	80	98	85	78
Benigànim	95	98	97	93	78	0	51	88	75
Gandía	100	94	77	100	58	72	79	43	78
Benidorm	64	99	100	100	75	100	94	100	91
Monòver	92	99	86	99	82	100	100	79	92
S. Vicent Raspeig	100	100	74	97	33	24	62	1	61
Renfe	99	100	97	99	43	0	0	0	55
Florida	0	0	0	0	24	45	100	99	34
El Pla	100	100	85	88	100	100	100	98	96
Elx3	94	91	100	88	91	71	82	98 95	90 89
Agroalimentari	90	100	100	96	89	99	76	93 97	93
Orihuela	100	99	99	95	99	73	38	92	93 87

Los monitores de ozono que mayores incidencias registraron durante el Programa Previozono 2008 fueron las estaciones de Facultats y Nuevo Centro

Informe final 22 (22-39)

(disponibilidad de un 74% de registros medios horarios), L'Eliana (71%), Sant Vicent del Raspeig (61%), Pista de Silla (54%) y Quart de Poblet (46%). Las incidencias técnicas detectadas en estas cabinas se debieron principalmente a desplazamientos de los datos registrados hacia valores por encima, o por debajo, respecto de los datos registrados en estaciones próximas; salidas inestables en los monitores, en los cuales se podía observar una pauta anormal respecto a las medidas registradas en el histórico de estas estaciones o respecto a las medidas registradas en las estaciones de su entorno más próximo; falta de datos, ya fuera por la retirada del monitor de ozono por avería técnica, o por fallos en el sistema de comunicación, y el registro de datos constantes, en cuyo caso los valores registrados no presentaban variabilidad temporal alguna.

3.2. Estadística descriptiva

En este subapartado se muestra un resumen estadístico de las series de promedios diarios, máximos horarios diarios, máximos octohorarios diarios de concentración de ozono en cada una de las cabinas de la Red Valenciana de Vigilancia y Control de la Contaminación Atmosférica utilizadas en el desarrollo del Programa Previozono 2008, comprendido entre marzo y octubre. Estas series de valores característicos de la evolución de las concentraciones diarias, y posteriores parámetros estadísticos se calculan siguiendo los criterios especificados en la Directiva 97/101/CE del Consejo, recogidos en la tabla 7.

Tabla 7: Criterios para agregar datos y calcular los parámetros estadísticos

Parámetro	Porcentaje requerido de datos
Valores horarios	75% (45 minutos)
Valores octohorarios	75 % de los valores (6 horas)
Máximos diario de las medias octohorarias de periodos octohorarios móviles	75% de los promedios octohorarios móviles (18 promedios octohorarios diarios)
AOT40	90 % de los valores horarios durante el periodo de tiempo definido para calcular el valor AOT40
Número de superaciones y valores máximos mensuales	90% de los valores máximos diarios de las medias octohorarias (27 valores diarios disponibles por mes)

Las tablas siguientes recopilan los valores medios mensuales y desviaciones típicas correspondientes a las series temporales de valores horarios, valores máximos diarios y valores máximos octohorarios durante el Programa Previozono 2008. Como guía a la hora de visualizar las tablas hay que tener como referencia que han sido realizadas imponiendo la condición de que al menos existiera el 90% (mínimo 27 medidas) de datos válidos durante cada mes, motivo por el cual hay celdas sin datos identificando los meses que no satisfacen esta condición. Los resultados obtenidos apenas varían en comparación a las campañas anteriores. Las conclusiones más significativas son las siguientes:

- La tabla 8 presenta la media mensual obtenida a partir de las medias diarias para cada cabina. Los valores más elevados se registran, aunque no exento de alguna excepción local, en las cabinas de medida de las comarcas del interior de Castellón: Els Ports-Maestrat. El valor medio máximo de ozono para cada mes se concentra en las estaciones de Vallibona (marzo 88 μg/m³, abril 100 μg/m³, mayo 99 μg/m³, junio 95 μg/m³, julio 98 μg/m³, agosto 90 μg/m³, y octubre 72 μg/m³) y Coratxar (septiembre 82 μg/m³). En cambio, el valor medio mínimo se registra en las estaciones emplazadas en zonas próximas a las fuentes de precursores, tales como grandes núcleos urbanos o polígonos industriales. La cabina situada en la calle Linares (Valencia) registra valores medios mínimos en marzo (25 μg/m³), abril (33 μg/m³), mayo (33 μg/m³), julio (36 μg/m³), agosto (36 μg/m³), y octubre (18 μg/m³), mientras la estación de medida situada en Nuevo Centro (Valencia) los concentra en junio (31 μg/m³) y septiembre (25 μg/m³). Nótese que el valor medio mínimo absoluto se registra en el periodo laxo, concretamente en octubre.
- La tabla 9 muestra el promedio mensual de los valores máximos horarios. Salvo excepciones puntuales (Gandia, marzo 85 ug/m3, y Sant Vicent del Raspeig, abril 105 ug/m3), las comarcas de Els Ports-Maestrat (Castellón), Els Serrans (Valencia) y el Vinalopó Mitjà (Alicante) registran los valores más elevados durante los meses de vigilancia: Sant Jordi (mayo 101 μg/m³), Villar del Arzobispo (junio 100 μg/m³, julio 128 μg/m³ y agosto 105 μg/m³), Monòver (septiembre 80 μg/m³), y Zorita y Penyeta (octubre 76 μg/m³). Esta concentración de los picos máximos de ozono en el interior responde principalmente a la dinámica de transporte de los contaminantes emitidos en las áreas precursoras (grandes núcleos urbanos y centros industriales). El proceso de dispersión se realiza a favor de las brisas marinas que transportan los contaminantes hacia el interior. Además, las reacciones fotoquímicas que operan durante el tiempo de residencia de los contaminantes primarios favorece paralelamente la concentración de ozono en las cabinas del interior, principalmente en verano al existir condiciones meteorológicas favorables.
- La tabla 10 recopila la estadística de los promedios mensuales de los máximos octohorarios diarios de ozono en las cabinas de la RVVCCA. En esta tabla se ponen de manifiesto las mismas características que en las anteriores, con valores más elevados durante los meses de vigilancia en las comarcas de Els Ports-Maestrat (Castellón) y Els Serrans (Valencia). Puntualmente se observa que los valores promedios se sitúan por encima del umbral de protección a la salud (120 μg/m³), como sucede en el mes de julio en Villar del Arzobispo, con 123 μg/m³.

Tabla 8. Media mensual de los valores medios diarios, siendo x el valor medio y σ la desviación tipo. Tanto x como σ han sido calculados a partir del 90% de los valores medios válidos

Estación	Ma	ır.	Abr	,	May	·	Jun.		Jul.		Age	0.	Sep).	Oct	t.
Estación	X	σ	X	σ	X	σ	X	σ	X	σ	X	σ	х	σ	X	σ
Zorita	71	18	87	16	88	23	77	18	80	11	78	13	66	13	49	13
Coratxar	69	23									89	12	82	13	69	10
Morella			96	12	96	13	93	17	94	13	86	10	81	12	71	9
Vallibona	88	7	100	12	99	15	95	19	98	14	90	12			72	13
Vilafranca	78	10	89	11	86	14	82	18			71	14	66	12	56	10
Sant Jordi			84	12	84	16	69	22	74	9	69	9	68	10	56	12
T.Endomenech			65	9	62	14	62	12	57	8					43	11
Cirat	71	12	80	10	70	14			73	9	67	14	57	11	45	15
Alcora2	58	18			72	20					60	9	52	12	36	17
Onda	69	14	82	12	76	16	74	17	74	9	73	10	64	11	50	13
Penyeta	71	16	78	10	74	13	75	18					79	11	67	13
Patronat	46	18	56	16	65	15			62	7	54	15			39	14
Grao	53	19	66	12	70	14	60	11	61	8	52	8	51	11		
Ermita	40	17	50	9	53	16	48	13	53	9	55	9	41	13	33	15
Burriana	55	14	63	10	41	11	53	18			46	9			43	14
Viver	73	13	82	16			76	15	72	13	65	13	63	10	51	13
Sagunt Nord	40	13					63	12	59	8	49	17	58	9	47	16
Port de Sagunt	58	17	67	14	72	16			61	15	64	8	57	11	42	15
V. Arzobispo	78	11	91	9	81	18	83	14	83	11	79	6	70	10		
L'Eliana			74	11	68	13	66	12	69	7	65	9				
Paterna			66	9									53	13	44	14
Facultats	59	15	71	10	67	12	65	11							38	19
Q. de Poblet													30	8	20	11
Viveros	46	17	58	11	52	12	49	9					49	7	34	15
Nuevo Centro	34	16	44	10	40	11	31	10					25	9	19	14
Aragón																
Politécnic			55	9	56	9	63	12	69	6			55	9	50	20
Linares	25	12	33	9	33	10	32	9	36	6	36	8	27	7	18	12
Pista de Silla	26	10											49	13		
Caudete			83	10	81	14	85	15	81	8	78	6	65	10	53	11
Alzira	57	15	67	11	63	12	63	9	51	8	50	8	48	7	40	13
Ontinyent	73	11	86	8	79	14	80	12	77	11	72	8			52	14
Verge d. Lliris	63	12	74	16	66	13							60	8	57	17
Benigànim	58	12	72	7	68	13	65	16	69	22					50	13
Gandía	56	17	70	16			72	10					39	15		
Benidorm			85	10	82	14	79	11			68	8	67	11	63	11
Monòver	71	13	84	7	71	15	79	12	73	16	73	7	63	8	50	16
S. Vicent	77	19	85	15			62	12								
RENFE	48	15	55	12	48	13	53	9								
Florida													68	10	58	12
El Pla	57	15	68	15	65	15	66	9	56	6	58	9	54	8	45	14
Elx3	60	17	72	15	69	12	70	14	62	15					35	11
Agroalimentari	65	19	75	11	69	14	70	16	67	13	64	8			49	12
Orihuela	47	13	54	9	51	11	43	7	44	6					38	11

Tabla 9. Media mensual de los valores máximos diarios, siendo x el valor medio y σ la desviación tipo. Tanto x como σ han sido calculados a partir del 90% de los valores máximos válidos

Estación	M	ar.	Ab	r.	Ma	ıy.	Ju	n.	Ju	l.	Ag	50.	Se	ep.	O	ct.
Estación	X	σ	X	σ	X	σ	X	σ	X	σ	X	σ	X	σ	X	σ
Zorita	60	39	88	52	87	55	92	50	91	53	79	52	72	44	76	23
Coratxar	72	32									78	44	60	44	69	29
Morella			70	51	64	50	92	41	81	49	68	43	60	41	68	25
Vallibona	58	42	89	47	77	53	88	51	102	42	85	41			68	31
Vilafranca	78	31	71	51	67	48	94	44			87	37	70	36	56	30
Sant Jordi			84	44	101	41	87	40	75	46	73	41	55	42	62	30
T.Endomenech			62	41	67	42	73	42	65	39					65	23
Cirat	78	28	59	48	78	44			107	43	96	40	62	39	61	24
Alcora2	70	36			93	46					67	43	74	33	61	23
Onda	73	33	72	50	93	46	85	48	92	50	67	47	71	40	68	28
Penyeta	63	38	52	42	69	44	89	41					75	41	76	28
Patronat	69	28	73	41	67	43			82	24	81	19			56	26
Grao	72	34	66	49	74	50	84	37	77	33	79	20	62	35		
Ermita	68	24	70	31	59	34	66	36	68	34	70	31	70	25	60	21
Burriana	59	42	77	50	73	22	88	36			58	32			66	28
Viver	63	40	78	50			97	49	98	57	78	53	77	44	63	30
Sagunt Nord	60	24					76	43	82	36	64	38	69	40	65	28
Port de Sagunt	69	34	79	44	76	52			70	41	71	36	63	38	63	29
V. Arzobispo	64	40	75	59	87	53	100	56	128	49	105	48	77	46		
L'Eliana			55	52	90	44	90	47	83	54	85	38				
Paterna			81	29									55	40	44	30
Facultats	76	30	70	46	83	41	81	41							60	32
Q. de Poblet													64	26	49	22
Viveros	70	24	69	32	69	31	68	28					70	29	49	25
Nuevo Centro	63	18	77	16	61	29	51	25					52	20	40	25
Aragón																
Politécnic			78	16	76	30	81	37	78	43			68	39	70	34
Linares	47	19	57	23	63	18	54	20	58	16	58	16	48	18	36	19
Pista de Silla	43	14											58	36		
Caudete			78	48	66	54	87	53	95	46	85	47	57	39	65	28
Alzira	66	40	56	48	77	48	82	47	81	36	70	32	64	40	70	20
Ontinyent	80	28	66	49	65	49	98	37	69	49	80	40			61	27
Verge d. Lliris	78	21	74	39	71	39							60	38	74	32
Benigànim	73	34	76	47	92	36	91	40	114	39					75	41
Gandía	85	16	68	49			83	44					65	31		
Benidorm			74	45	66	43	55	44			75	30	74	28	72	20
Monòver	72	32	73	54	82	40	93	48	85	54	62	48	80	34	57	32
S. Vicent	77	45	104	41			66	45								
RENFE	68	25	73	28	68	28	73	22								
Florida													51	43	75	30
El Pla	73	31	58	48	57	45	79	35	68	31	60	35	78	24	63	31
Elx3	70	35	66	51	70	46	82	42	80	36					53	23
Agroalimentari	72	38	75	49	77	45	83	47	83	41	62	41			72	24
Orihuela	74	8	72	31	74	28	70	14	59	27					62	29

Tabla 10. Medias mensuales de los valores máximos octohorarios diarios de ozono, siendo x el valor medio y σ la desviación tipo. Tanto x como σ han sido calculados a partir del 90% de los valores máximos octohorarios válidos

partir aei 90%		ar.	Ab		Ma		Ju		Ju		Ag	·O	Sa	ep.	0	ot .
Estación							X							1		$\frac{c\iota}{\Sigma}$
Zorita	X 90	σ 10	x	<u>σ</u>	x	<u>σ</u>	107	<u>σ</u>	x	<u>σ</u>	X	<u>σ</u>	X 96	<u>σ</u>	X 74	14
Coratxar	90 		112	10	114	20		20	112		100	13	93	13	78	11
Morella			107	10	106	11	102	18	106	12	95	11	90	11	79	10
Vallibona	95	7	111	12	110	14	102	19	112	14	100	13		11	83	11
Vilafranca	93 87	8	103	13	101	14	107	22	112	14	92	15	83	14	69	11
Sant Jordi	0/		103	14	101	14	92	25	99	12	93	11	92	13	73	13
T.Endomenech			92	12	92	15	90	16	89	11			<i>92</i>	13	67	10
Cirat	84	8	98	12	96	17			109	15	101	12	88	10	63	15
Alcora2	84	16		12	105	18					90	12				
Onda	86	10	103	14	105	18			106	12	98	10	88	15	66	16
Penyeta	83	14	94	10	92	13	95	18		12			94	12	79	13
Patronat		14			91	15			81	10				12	61	12
Grao	81	13	98	11	101	13	93	12	88	11	78	10	79	11		12
Ermita	64	15	78	11	79	16	77	17	78	13	80	10		11	55	15
Burriana	88	9	102	11	79	13	89	27		13	73	11			69	15
Viver	91	9	102				107	21	115	17	103	13	91	16	71	16
Sagunt Nord	58	12						21	89	17	103	13	84	14	69	15
Port de Sagunt	38 80	15	92	18	102	14			90	10	85	9	82	14	61	16
V. Arzobispo	94	8	110	14	102	15	115	22	123	18	109	12	95	15		
L'Eliana				13	108	17	100	20	106	13	95	11	93	13		
Paterna			102 85	9	102	1 /	100	20			93	11	82	11	65	16
Facultats	82	11	96	11	95	16	94	15					82	11	62	22
Q. de Poblet	02				93								60	13		
Viveros	69	15	80	10	78	15	72	11					73	9	51	19
Nuevo Centro	55	16	67	11	65	15							43	13	33	20
Aragón																
Politécnic					 79	8	90	16	95	9			86	13	75	22
Linares	41	13	51	14	52	14	49	11	51	8	53	8	43	9	30	14
Pista de Silla	39	10	J1 	14	32		49		J1 				75	12		
Caudete		10	102	13	101	15	107	20	108	11	102	9	87	13	72	13
Alzira	84	10	99	11	96	14	98	17	87	17	81	12		13	64	18
Ontinyent	87	6	100	9	97	14	101	16	100	14	93	10			04	
Verge d. Lliris	78	8	92	10	85	16							81	12		
Benigànim	87	8	101	12	97	16										
Gandía	78	11	98	10	91		100	15								
Benidorm			101	7	95	13	94	11			82	10	82	8	74	12
Monòver	0.5										97					12
S. Vicent	85 97	8	106 111	9			104 92	15 11				11	85	12		
RENFE	97 66	13	75	11	67	13	71	10								
Florida													94	10	81	12
El Pla	90	11							76		70			10		13
El Pia Elx3	80 83	11	98	9	05	12			76	9	78	10	77	10	69	14
		10	105		95	13	102	12	91	13		10			53	10
Agroalimentari	90	10	105	9	96	15	103	13	96	11	89	10			71	13
Orihuela	68	8	83	9	78	15	68	7	66	10					66	15

3.3. Caracterización estadística de las estaciones

En este apartado se caracterizan las diferentes estaciones de medida de la RVVCCA, a partir del cálculo de varios parámetros estadísticos.

Esta caracterización de las series temporales de valores promedio diarios, máximos diarios y máximos octohorarios diarios en cada una de las estaciones es sólo representativa para el periodo en el cual se realizó el cálculo, puesto que al escogerse un periodo temporal de un año de medidas, las conclusiones no pueden ser generalizadas.

El significado de los parámetros estadísticos calculados es:

- Mediana o percentil 50: Es el valor de la variable que deja por debajo de sí a la mitad de las *n* observaciones y por encima a la otra mitad. Este valor de medida de la tendencia central es el más adecuado para la observación de una cierta inclinación en la distribución.
- Media: Es una medida de la tendencia central de una distribución.
- Máximo: Es una medida que indica el valor máximo alcanzado durante el periodo temporal estudiado.
- Percentil 98 (máximo): Es una medida de la posición, y en el caso de variables discretas, el percentil de orden K se define como la observación P_K que deja por debajo de sí el K% de la población. De esta forma, el P98 ofrece una idea del valor máximo medido en la estación, pero sin tener en cuenta valores más puntuales.
- Percentil 90 Percentil 10 (rango): Se trata de una medida de la variabilidad o dispersión de la distribución. Indica si los valores de la distribución están próximos entre sí o si por el contrario están muy dispersos. El utilizar los percentiles, en vez del valor máximo y mínimo evitará tener la influencia de los valores más puntuales.

En las tablas 11, 12 y 13 se resumen los resultados de dichos cálculos durante los meses de desarrollo del Programa Previozono 2008 para cada una de las estaciones. Al igual que se observa en las tablas dedicadas a la estadística descriptiva, los valores centrales (media y mediana) más elevados de cada serie se registran en las cabinas del interior: Vallibona (media 87 μg/m³, y mediana 86 μg/m³), Morella (83 y 83 μg/m³), Coratxar (77 y 78 μg/m³) y Villar del Arzobispo (72 y 74 μg/m³). En cambio, los valores mínimos se localizan en las cabinas de medida ubicadas en zonas urbanas próximas a la costa: Aragón (15 y 11 μg/m³), Linares (25 y 28 μg/m³), Quart de Poblet (26 y 23 μg/m³), Nuevo Centro (27 y 26 μg/m³) y Pista de Silla (36 y 33 μg/m³).

De la lectura de las tablas se deduce la influencia que la ubicación geográfica de la cabina tiene sobre los niveles de ozono registrados en ella. Así, los valores promedios

y máximos elevados se encuentran en emplazamientos situados en el tránsito de masas de aire envejecidas durante un gran porcentaje de tiempo, teniendo el ejemplo de las estaciones situadas en Els Ports-Maestrat (Castellón). En cambio, las estaciones con valores máximos elevados y promedios no especialmente elevados, se localizan en emplazamientos que no siempre se encuentran bajo la presencia o tránsito de masas envejecidas.

Tabla 11. Caracterización de las estaciones de la RVVCCA durante el Previozono 2008 (marzo-octubre). Medias horarias diaras ($\mu g/m^3$)

Estación	Media	P50	Máximo	P98	Rango (P90-P10)
Zorita	66	67	137	118	60
Coratxar	77	78	126	118	42
Morella	83	83	127	118	41
Vallibona	87	86	133	122	42
Vilafranca	71	70	116	109	47
Sant Jordi	66	67	110	101	48
T.Endomenech	50	53	88	81	46
Cirat	61	64	99	90	48
Alcora2	52	54	107	93	55
Onda	64	65	101	98	50
Penyeta	70	73	104	97	43
Patronat	47	50	94	85	54
Grao	50	52	101	85	54
Ermita	41	43	87	74	50
Burriana	44	43	85	77	44
Viver	64	65	100	95	48
Sagunt Nord	45	48	85	75	49
Port de Sagunt	54	58	100	89	54
V. Arzobispo	72	74	107	105	48
L'Eliana	56	61	100	88	54
Paterna	50	53	93	80	45
Facultats	50	50	91	86	56
Q. de Poblet	26	23	76	58	35
Viveros	41	42	87	74	48
Nuevo Centro	27	26	71	61	40
Aragón	15	11	49	43	25
Politécnic	57	59	89	82	36
Linares	25	28	64	51	34
Pista de Silla	36	33	84	75	56
Caudete	68	69	110	103	47
Alzira	50	50	92	84	42
Ontinyent	68	70	108	100	43
Verge d. Lliris	59	60	97	90	40
Benigànim	56	59	99	90	55
Gandía	52	53	105	89	54
Benidorm	70	70	109	99	37
Monòver	67	69	106	98	46
S. Vicent	63	62	108	104	59
RENFE	48	48	88	75	35
Florida	56	58	85	83	45
El Pla	53	56	93	84	43
Elx3	53	54	96	91	52
Agroalimentari	59	61	101	93	47
Orihuela	40	40	75	67	38

Tabla 12. Caracterización de las estaciones de la RVVCCA durante el Previozono 2008 (marzo-octubre). Máximos horarios ($\mu g/m^3$)

Estación	Media	P50	Máximo	P98	Rango (P90-P10)
Zorita	77	85	169	148	116
Coratxar	72	83	147	136	108
Morella	73	83	147	133	107
Vallibona	75	86	149	146	114
Vilafranca	73	79	168	138	107
Sant Jordi	72	79	147	135	109
T.Endomenech	66	75	127	118	87
Cirat	74	79	155	143	116
Alcora2	71	78	143	135	107
Onda	74	78	147	135	113
Penyeta	71	82	137	130	103
Patronat	66	75	133	119	87
Grao	68	78	138	124	100
Ermita	62	69	133	112	78
Burriana	64	73	136	129	102
Viver	75	79	169	151	120
Sagunt Nord	64	72	128	122	85
Port de Sagunt	67	75	139	126	102
V. Arzobispo	84	87	195	165	130
L'Eliana	75	83	146	139	116
Paterna	63	74	141	116	87
Facultats	67	76	132	126	102
Q. de Poblet	45	43	122	96	77
Viveros	60	67	114	97	82
Nuevo Centro	52	55	100	94	71
Aragón	33	32	77	73	65
Politécnic	73	85	135	125	100
Linares	46	52	98	87	64
Pista de Silla	52	49	133	116	89
Caudete	74	79	154	143	113
Alzira	69	79	143	129	101
Ontinyent	72	80	149	131	107
Verge d. Lliris	73	78	160	137	88
Benigànim	80	88	165	147	114
Gandía	71	78	140	127	104
Benidorm	69	82	133	116	87
Monòver	74	83	162	142	112
S. Vicent	75	84	146	139	111
RENFE	69	75	116	97	73
Florida	64	78	134	127	98
El Pla	65	77	125	116	88
Elx3	68	77	135	124	103
Agroalimentari	72	85	147	124	103
Orihuela	64	69	112	98	75

Tabla 13. Caracterización de las estaciones de la RVVCCA durante el Previozono 2008 (marzo-octubre). Máximos octohorarios ($\mu g/m^3$)

Estación	Media	P50	Máximo	P98	Rango (P90-P10)
Zorita	93	94	157	143	60
Coratxar	91	91	135	129	47
Morella	93	93	133	128	43
Vallibona	96	96	142	135	47
Vilafranca	86	85	152	132	52
Sant Jordi	87	87	130	125	57
T.Endomenech	78	79	116	111	47
Cirat	85	86	132	127	62
Alcora2	79	83	136	123	68
Onda	86	89	137	126	61
Penyeta	86	86	126	119	43
Patronat	70	75	119	110	55
Grao	78	82	127	118	56
Ermita	65	68	115	102	55
Burriana	73	73	128	122	63
Viver	90	91	142	136	61
Sagunt Nord	68	70	118	109	61
Port de Sagunt	77	82	125	120	63
V. Arzobispo	96	96	160	146	61
L'Eliana	86	90	135	129	65
Paterna	74	75	118	109	49
Facultats	76	81	125	116	63
Q. de Poblet	45	42	99	88	52
Viveros	62	67	106	97	56
Nuevo Centro	45	47	97	83	57
Aragón	28	22	68	64	45
Politécnic	81	82	121	111	45
Linares	40	44	90	72	48
Pista de Silla	55	51	114	105	68
Caudete	88	89	139	132	54
Alzira	80	81	130	123	49
Ontinyent	86	88	133	121	52
Verge d. Lliris	78	78	134	115	45
Benigànim	86	87	156	135	72
Gandía	80	82	129	119	52
Benidorm	84	84	118	112	38
Monòver	89	90	139	128	54
S. Vicent	90	91	138	133	56
RENFE	66	67	101	96	38
Florida	85	87	117	112	40
El Pla	77	79	118	110	45
Elx3	77	78	123	116	57
Agroalimentari	85	88	131	119	50
Orihuela	65	66	101	97	41

- *3.3.1. Estadística referida a la normativa*. El propósito fundamental de la vigilancia de los niveles de concentración de ozono durante los meses de marzo a octubre dentro del Programa Previozono es la información de posibles superaciones de los umbrales legales establecidos en la Directiva 2002/3/CEE, actualizada en la Directiva 2008/50/CE, sobre contaminación atmosférica por ozono. Estos umbrales son:
 - *Información*: establecido en 180 μg/m³ como promedio horario.
 - *Alerta*: establecido en 240 μg/m³ como promedio horario.

En este subapartado también se tendrán en cuenta el resto de umbrales que aparecen en la normativa referidos tanto a la protección de la salud humana, como de la vegetación. A continuación, se muestran los umbrales legislados relativos al ozono y que se recogen en el Real Decreto 1796/2003. La Directiva 2002/3/CEE, actualizada en la Directiva 2008/50/CE, establece también para el ozono unos valores objetivo y unos objetivos a largo plazo.

Tabla 14. Umbrales de concentración de ozono. Directiva 2008/50/CE

	Parámetro	Umbral
Protección a la salud	Promedio 8 horas	$120 \mu\mathrm{g/m}^3$
Protección a la vegetación	AOT40	$18000 \mu \text{g/m}^3$
Información	Promedio horario	$180 \mu g/m^3$
Alerta	Promedio horario	$240 \mu g/m^3$

Tabla 15. Valores objetivo de ozono a alcanzar el año 2010. Directiva 2008/50/CE

	Parámetro	Valor objetivo para el 2010
Protección de la salud humana	Máximo de las medidas octohorarias del día	120 μg/m ³ que no deberá superarse más de 25 días por cada año civil de promedio en un periodo de 3 años.
Protección de la vegetación	AOT40, calculada a partir de valores horarios de mayo a julio.	18000μg/m ³ *h de promedio en un periodo de 5 años.

La evolución de las concentraciones de ozono a lo largo de la Comunidad Valenciana y la probabilidad de superaciones de los umbrales de referencia marcados en la legislación, está ligada a las propias características que presenta el ozono. Se trata de un contaminante fotoquímico secundario cuya formación puede darse en puntos alejados de las fuentes de emisión de gases primarios; de forma que las concentraciones elevadas no quedan restringidas a puntos próximos a las fuentes. Estas características unidas a las propias de la cuenca mediterránea: elevada insolación, mar rodeado de altas montañas que actúan como chimeneas orográficas, pasos naturales a través de los que

viaja la masa aérea desde los focos de emisión hacia el interior, etc., dan lugar a un comportamiento característico de los niveles de ozono.

De esta forma, en los sucesivos años de campaña de vigilancia y de análisis de las medidas, se observa como son las estaciones situadas en el interior de la Comunidad Valenciana las que se registran un mayor número de superaciones, principalmente en verano cuando el desarrollo de los ciclos locales es mayor.

En las estaciones de medida ubicadas en entornos urbanos o industriales el número de superaciones de los umbrales legales relativos al ozono es menor que el registrado en estaciones localizadas en entornos no tan influenciados por las emisiones humanas (tráfico, chimeneas industriales, etc.). Sin embargo, este menor número de superaciones en las estaciones urbanas no siempre es debido a una mejor calidad del aire ambiente, pudiendo estar ligado a los procesos químicos de eliminación de ozono por parte de los óxidos de nitrógeno, principalmente NO con origen en el tráfico. En resumen, en las zonas con concentraciones elevadas de óxidos de nitrógeno, los niveles de ozono se reducen debido a la destrucción química. No obstante, los compuestos resultantes de estas transformaciones químicas reaccionarán entre sí en zonas alejadas de focos humanos (carreteras, industrias) dando lugar, de nuevo, a la formación de ozono. De ahí que se registren un mayor número de superaciones de los umbrales legales en las zonas del interior de la Comunidad Valenciana, estando éstas asociadas a la llegada de la masa aérea contaminada procedente del litoral.

Umbrales referidos a la vegetación

El valor AOT40 es la suma de la diferencia entre las concentraciones horarias superiores a los 80 μg/m³ a lo largo del periodo temporal entre el 1 de Mayo y el 31 de Julio de cada año utilizando únicamente los valores horarios medidos entre las 8:00 y las 20:00 horas, hora de Europa Central (CET), cada día. Para realizar una medida representativa del nivel concentración de ozono es necesario que se disponga de entre el 90% y 100% de valores horarios, pudiéndose aplicar la siguiente ecuación para obtener el valor estimado en caso de que no se disponga del 100%. En el supuesto de que se disponga de un porcentaje inferior al 90% de valores horarios el valor de AOT40 no se considera representativo de la concentración de ozono para dicho periodo temporal.

$$N^{\circ}$$
 total posibles de horas
$$AOT40_{previsto} = AOT40_{medido} *$$

$$N^{\circ}$$
 de valores horarios medidos

En la tabla 16 se representan los valores del parámetro AOT40 referidos al umbral de protección a la vegetación tomando como referencia para el periodo 2008 el valor de $6000~\mu g/m^3$ h, basándose en los valores objetivos a largo plazo marcados por la legislación para el año 2020 (tabla 17). Se ha optado por aplicar la ecuación anterior a

todas las estaciones con el propósito de poder facilitar una comparación del valor AOT40 obtenido, resaltando aquellas estaciones que no dispongan del porcentaje de valores horarios necesario para considerar como representativa a la medida.

Tabla 16. Valores AOT40 referidos a la vegetación. Mayo-Julio 2008

Estación	AOT40 (μg/m ³)	Superación umbral (2008)	Superación umbral (2007)
Zorita	29415	SI	SI
Coratxar	18395	SI	NO
Morella	20593	SI	SI
Vallibona	22366	SI	SI
Vilafranca	20622	SI	NO
Sant Jordi	20452	SI	NO
T. Endomenech	10393	NO	NO
Cirat	19755	SI	SI
Alcora2	16983	NO	SI
Onda	21112	SI	SI
Penyeta	14696	NO	NO
Patronat	7110	NO	NO
Grao	13115	NO	NO
Ermita	4577	NO	NO
Burriana	7956	NO	NO
Viver	26452	SI	SI
Sagunt Nord	10040	NO	NO
Port de Sagunt	14359	NO	NO
V. Arzobispo	31403	SI	NO
L'Eliana	19345	SI	SI
Paterna	7685	NO	NO
Facultats	12956	NO	
Q. de Poblet	3505	NO	NO
Viveros	3120	NO	NO
Nuevo Centro	869	NO	NO
Aragón			NO
Politécnic	9041	NO	
Linares	206	NO	NO
Pista de Silla	5552	NO	NO
Caudete	23402	SI	SI
Alzira	13026	NO	SI
Ontinyent	17445	NO	SI
Verge d. Lliris	11851	NO	NO
Benigànim	20309	SI	SI
Gandía	15373	NO	NO
Benidorm	11827	NO	NO NO
Monòver	19398	SI	SI
S. Vicent		NO	SI SI
RENFE	15232 1058	NO	NO NO
		NO NO	
Florida El Pla	14427	NO NO	NO
	6854	NO NO	NO NO
Elx3	13210		NO
Agroalimentari	16156	NO NO	SI
Orihuela	1563	NO	NO

Umbrales referidos a la salud.

En el Real Decreto 1796/2003 se indican tres umbrales referidos a la salud humana:

- Umbral de protección a la salud: 120 μg/m³ (promedio octohorario)
- Umbral de información: 180 μg/m³ (promedio horario)
- Umbral de alerta: 240 µg/m³ (promedio horario)

Umbral de protección a la salud.

El umbral de protección a la salud humana se establece en 120 μg/m³ como promedio octohorario. Este valor será tomado como referencia de los valores máximos diarios octohorarios calculados a partir de los promedios móviles de ocho horas. El promedio octohorario calculado se asignará al día en que dicho promedio termina, es decir, el primer periodo de cálculo para un día cualquiera será el periodo de las 17:00 del día anterior hasta las 1:00 de dicho día; el último periodo de cálculo para un día cualquiera será el periodo a partir de las 16:00h hasta las 24:00 de dicho día.

En la tabla 18 se desglosa el número de superaciones del umbral de protección a la salud ($120~\mu g/m^3$) registradas durante los meses de marzo a octubre en cada una de las estaciones de la RVVCCA tomando como criterio que sólo se contabiliza para su cálculo el valor máximo octohorario alcanzado durante cada jornada.

Tabla 17. Objetivos a largo plazo para el ozono. Directiva 2008/50/CE.

	Parámetro	Objetivo a largo plazo
Protección de la salud humana	Máxima diaria de las medias móviles octohorarias dentro de un año civil.	$120 \mu \text{g/m}^3$
Protección de la vegetación	AOT40, calculada a partir de valores horarios de mayo a julio.	6000 μg/m ³ * h

Tabla 18. Número de superaciones del umbral de protección a la salud. Calculados sobre el 90% de valores máximos octohorarios diarios válidos

Estación	Mar.	Abr.	May.	Jun.	Jul.	Ago.	Sep.	Oct.	Total
Zorita	0	7	10	9	8	0	0	0	34
Coratxar	0	0	0	0	0	0	1	0	1
Morella	0	4	3	6	4	0	0	0	17
Vallibona	0	6	7	9	9	1	0	0	32
Vilafranca	0	2	4	7	0	0	0	0	13
Sant Jordi	0	2	8	3	1	1	0	0	15
T.Endomenech	0	0	0	0	0	0	0	0	0
Cirat	0	2	3	0	7	0	0	0	12
Alcora2	0	0	6	0	0	0	0	0	6
Onda	0	3	8	0	5	0	0	0	16
Penyeta	0	0	1	2	0	0	0	0	3
Patronat	0	0	0	0	0	0	0	0	0
Grao	0	0	2	0	0	0	0	0	2
Ermita	0	0	0	0	0	0	0	0	0
Burriana	0	2	0	6	0	0	0	0	8
Viver	0	0	0	10	13	1	0	0	24
Sagunt Nord	0	0	0	0	0	0	0	0	0
Port de Sagunt	0	2	4	0	0	0	0	0	6
V. Arzobispo	0	7	8	13	19	7	1	0	55
L'Eliana	0	5	4	6	4	0	0	0	19
Paterna	0	0	0	0	0	0	0	0	0
Facultats	0	1	3	0	0	0	0	0	4
Q. de Poblet	0	0	0	0	0	0	0	0	0
Viveros	0	0	0	0	0	0	0	0	0
Nuevo Centro	0	0	0	0	0	0	0	0	0
Aragón	0	0	0	0	0	0	0	0	0
Politécnic	0	0	0	1	0	0	0	0	1
Linares	0	0	0	0	0	0	0	0	0
Pista de Silla	0	0	0	0	0	0	0	0	0
Caudete	0	2	6	12	4	0	0	0	24
Alzira	0	1	3	4	1	0	0	0	9
Ontinyent	0	1	2	3	4	0	0	0	10
Verge d. Lliris	0	0	0	0	0	0	0	0	0
Benigànim	0	2	3	0	0	0	0	0	5
Gandía	0	0	0	2	0	0	0	0	2
Benidorm	0	0	0	0	0	0	0	0	0
Monòver	0	2	0	7	0	1	0	0	10
S. Vicent	0	8	0	0	0	0	0	0	8
RENFE	0	0	0	0	0	0	0	0	0
Florida	0	0	0	0	0	0	0	0	0
El Pla	0	0	0	0	0	0	0	0	0
Elx3	0	0	0	0	1	0	0	0	1
Agroalimentari	0	1	1	2	2	0	0	0	6
Orihuela	0	0	0	0	0	0	0	0	0

Umbral de información y alerta

En este apartado, al igual que en el anterior, se muestran el número de superaciones del umbral de información ocurridas durante el Programa Previozono 2008 en las estaciones de la RVVCCA.

Tabla 19. Umbrales de información y alerta relativos al ozono. Directiva 2008/50/CE.

	Parámetro	Umbral
Umbral de información	Promedio horario	$180 \mu g/m^3$
Umbral de alerta	Promedio horario	$240 \mu g/m^3$

Tabla 20. Número de superaciones de los umbrales de información y/o alerta durante el Previozono 2008

Estación	Fecha	Hora (UTC)	Concentración (μg/m³)	Umbral	
Villar del				_	
Arzobispo	26/06/2008	17	204	Información	
Villar del					
Arzobispo	01/07/2008	16	195	Información	
Villar del					
Arzobispo	18/07/2008	17	180	Información	

4. ANÁLISIS DE LAS JORNADAS CON SUPERACIÓN DEL UMBRAL DE INFORMACIÓN

En esta sección se analizan las condiciones atmosféricas en los días de superación del umbral de información (180 μg/m³, promedio horario). Para ello se hace uso de los mapas sinópticos y de otras variables meteorológicas para la jornada de ocurrencia (D0), así como para las jornadas anterior (D-1) y posterior (D+1), estableciéndose la relación entre la situación atmosférica y la evolución de los niveles de concentración de ozono medidas en las estaciones de la Red Valenciana de Vigilancia y Control de la Contaminación Atmosférica.

4.1. Historial de superaciones en las estaciones de la RVVCCA

En la tabla 21 se presenta un listado con las superaciones del umbral de información en las estaciones de la RVVCCA durante el periodo comprendido entre los años 1997-2008.

Las causas meteorológicas bajo las que se incrementa la probabilidad de producirse valores de concentración de ozono por encima del umbral de información acontecen principalmente durante los meses centrales del año, y vienen caracterizadas por un régimen anticiclónico y estable, de elevados índices de radiación solar y altas temperaturas, en el que se desarrollan circulaciones de brisas marinas que transportan las emisiones costeras al interior a través de valles fluviales. A lo largo de este recorrido las masas aéreas están sometidas a procesos de formación fotoquímica, lo que puede favorecer la ocurrencia de incrementos puntuales de los niveles de ozono troposférico. La estrechez de las cuencas y la estabilidad vertical favorecen que la masa aérea quede confinada.

En el área mediterránea de la Península Ibérica existe un dominio de recirculaciones verticales de masas de aire asociado al elevado grado de ocurrencia y persistencia de las brisas marinas, particularmente en verano (en condiciones sinópticas de escaso gradiente horizontal de presión y elevada insolación), pero que también ha sido documentado en invierno. El resultado de estos procesos es una elevada residencia y envejecimiento de la masa aérea contaminada y, en consecuencia, un mayor tiempo de mezcla, la aparición de reacciones químicas y procesos de formación de contaminantes secundarios, tales como el ozono. Este problema de contaminación atmosférica no es tan habitual en las regiones del norte de Europa, donde la circulación de vientos del oeste renueva las masas de aire bajo un intenso transporte a larga distancia de aerosoles atmosféricos.

Tabla 21. Historial de superaciones del umbral de información en las estaciones de la RVVCCA en el periodo 1997-2008

Estación	Concentración	Fecha	Hora (UTC)	Duración (h)
P. de Sagunt	181	24/07/1997	14	1
Onda	182	01/08/1997	13	1
Paterna	196	10/09/1997	13	1
P. de Sagunt	184	30/06/1998	20	1
Vilafranca	185	06/07/1998	14-15	2
Morella	183	12/08/1998	14	1
P.de Sagunt	200	03/09/1999	13-14-15-16	4
Onda	182	16/09/1999	17	1
Onda	190	28/09/1999	17	1
Onda	182	29/09/1999	14	1
Vilafranca	185	31/05/2001	17-18	2
Vallibona	186	20/06/2001	21-22	2
Vilafranca	185	02/07/2001	16-17	3
S.Jordi	186	28/07/2001	14-15	2
Penyeta	197	28/07/2001	18	1
Onda	182	28/07/2001	19	1
Vilafranca	191	02/08/2001	14-15-16	3
El Grau	191	26/04/2002	17-18	2
Vilafranca	186	27/06/2002	15-16-17	3
Vallibona	193	14/06/2003	16-17	2
Vilafranca	194	11/07/2003	14-15-16	3
Vallibona	191	11/07/2003	15	1
Zorita	188	11/07/2003	16	1
Verge (Alcoi)	185	14/08/2003	16	1
Vilafrança	184	18/06/2004	17-18	2
Penyeta	181	18/06/2004	16	1
Verge dels Iris	184	18/06/2004	15-16	2
Caudete	181	16/06/2005	16	1
V. del Arzobispo	184	22/06/2005	14	1
Grau	184	29/06/2005	15	1
Caudete	193	13/07/2005	17-18	2
Caudete	182	14/07/2005	16	1
Caudete	191	15/07/2005	17-18	2
Caudete	193	23/07/2005	15-16-17-18	4
Agroalimentari	181	02/04/2006	14	1
V. del Arzobispo	181	07/06/2006	14	1
V. del Arzobispo	203	22/06/2006	13-14	2
Caudete	185	30/06/2006	15	1
Caudete	182	11/07/2006	15	1
Caudete	193	13/07/2006	13-14-15	3
Caudete	184	18/07/2006	16	1
Caudete	181	20/07/2006	14	1
V. del Arzobispo	199	21/07/2006	14	1
V. del Arzobispo	181	25/07/2006	13	1
_				
Zorita	192	28/08/2007	14-15-16-17 15	4
Coratxar	182	28/08/2007		1
Morella	198	28/08/2007	13-14-15-16-17	5
Vallibona Vilafranca	180	28/08/2007	14	1
Vilafranca	218	28/08/2007	13-14-15-16	4
Monovar	190	29/08/2007	14	1
V. del Arzobispo	204	26/06/2008	16-17	2
V. del Arzobispo	195	01/07/2008	16	1
V. del Arzobispo	180	18/07/2008	17	1

4.2. Jornada del 26 de junio de 2008

Durante la jornada del 26 de junio tuvo lugar el primer episodio de concentración de ozono con superación del umbral de información (180 μg/m³) en las estaciones de la RVVCCA durante la campaña de 2008. Este episodio afectó a un área geográfica muy local, concretamente alcanzando a la cabina ubicada en la población de Villar del Arzobispo, a sotavento de las emisiones primarias. En esta estación se superó dicho umbral a las 16 y 17 horas (hora local) con 200 y 204 μg/m³, respectivamente. Por tanto, la superación registrada tuvo un carácter muy restringido, consecuencia de los procesos locales y de la recirculación de una masa de aire envejecida. La superación también se produjo durante un corto periodo de tiempo, de apenas dos horas. En el resto de estaciones de la RVVCCA los valores horarios de concentración de ozono fueron moderados sin superar el valor legislado.

La interpretación de la situación meteorológica se realiza mediante el análisis de los campos de presión a nivel de mar, y las superficies geopotenciales de 850 y 500 hPa, así como del resto de variables atmosféricas (radiación; cobertura nubosa total; temperatura; y humedad) de la jornada del 26 de junio (D0), así como de los días anterior (D-1) y posterior (D+1) al suceso. La superación registrada fue consecuencia de las condiciones de acusada estabilidad atmosférica (Figura 4a), elevada fracción de insolación (Figura 4b) y temperaturas máximas elevadas (Figura 4c) que se registraron durante esta jornada en todo el territorio valenciano. Estas condiciones meteorológicas fueron proclives a la formación de ozono. En la jornada central del suceso (D0) el dominio correspondió a una dorsal de aire sahariano proyectada desde el norte de África (Marruecos), con altas presiones en superficie avanzando en forma de cuña desde el Atlántico sobre Europa Occidental, y bajas presiones relativas sobre el interior de la Península Ibérica. Estos elementos meteorológicos inhibieron la dispersión vertical de los contaminantes, y consecuentemente la ventilación de los estratos inferiores. La escasez de nubosidad y consecuentemente la eficaz insolación activó la producción fotoquímica de ozono a partir de las emisiones locales, y las débiles circulaciones locales de brisas marinas no ayudaron a la dispersión a mayor escala de estos contaminantes.

4.3. Jornada del 1 de julio de 2008

El segundo episodio de superación tuvo lugar pocos días después de ocurrir el primero, concretamente el 1 de julio de 2008. Durante esta jornada se alcanzó un nivel de concentración de 195 $\mu g/m^3$, de nuevo en la estación de Villar del Arzobispo. El episodio de superación también adquirió un carácter muy local, y se alcanzó a las 16 horas (hora local).

La ocurrencia de concentraciones elevadas de ozono en los niveles superficiales estuvo asociada a las altas temperaturas registradas esta jornada (Figura 5b y Figura 5c; reflejo de la entrada de una débil circulación de viento de poniente a lo largo de la mañana, y de una elevada insolación), unido a condiciones generales de estabilidad atmosférica (Figura 5a; presencia de una dorsal de aire sahariano sobre el centro peninsular y cuenca del Mediterráneo), que dificultaron y redujeron la limpieza y renovación de los niveles bajos de la atmósfera. Las emisiones de contaminantes en estas condiciones, y en

concreto de aquellas sustancias precursoras del ozono (óxidos de nitrógeno y compuestos orgánicos volátiles), potenciaron la formación de dicho contaminante, a sotavento de los puntos de emisión. En este panorama la cuenca del río Turia favoreció el transporte hacia el interior de las emisiones urbanas, conducidas por el régimen de brisas marinas una vez debilitados los vientos sinópticos de poniente, de manera que a lo largo de su desplazamiento fueron transformándose en presencia de luz solar.

La estación de Villar del Arzobispo, situada en esta trayectoria preferente, y bajo las condiciones atmosféricas descritas (circulaciones locales de brisas, poca ventilación general debido a estabilidad atmosférica, elevada insolación y concentración de contaminantes en torno al frente de la brisa marina), registró concentraciones elevadas de ozono durante las jornadas anteriores, concluyendo en el presente episodio de superación del umbral de 180 ug/m3 durante una hora.

En las jornadas siguientes la aproximación por el noroeste peninsular de una perturbación polar indujo a una circulación del oeste en altura, con una moderación de las temperaturas y un claro efecto de limpieza de la atmósfera a todos los niveles.

4.4. Jornada del 18 de julio de 2008

Durante la jornada del 18 de julio de 2008 a las 17 horas (hora local) se alcanzó el nivel de concentración de 180 ug/m3 en la cabina ubicada en la población de Villar del Arzobispo.

La superación registrada fue consecuencia de nuevo de las condiciones de elevada estabilidad atmosférica (Figura 6a) durante la presente jornada, con altas presiones niveles altos de la atmósfera sobre el sur peninsular (cresta de aire tropical continental sobre la mitad oriental), que limitaron fuertemente la ventilación de los estratos inferiores, a la vez que la eficaz insolación (Figura 6b) y las elevadas temperaturas (Figura 6c) favorecieron la formación fotoquímica de ozono a partir de las emisiones frescas locales.

De nuevo, la ocurrencia de la superación en un solo emplazamiento, y sin reflejo en las estaciones de medida cercanas, sugiere que la superación registrada tuvo también un carácter local, consecuencia de los procesos locales y de la recirculación de una masa aérea envejecida. La superación se produjo durante un corto periodo de tiempo, y en las estaciones de medida cercanas los niveles de ozono se mantuvieron alejados del umbral de información

Figura 3: Evolución de los niveles de concentración de ozono en la cabina de Villar del Arzobispo en los sucesos de superación del umbral de información durante las jornadas de: (a) 26 de junio de 2008, (b) 1 de julio de 2008, y (c) 18 de julio de 2008.

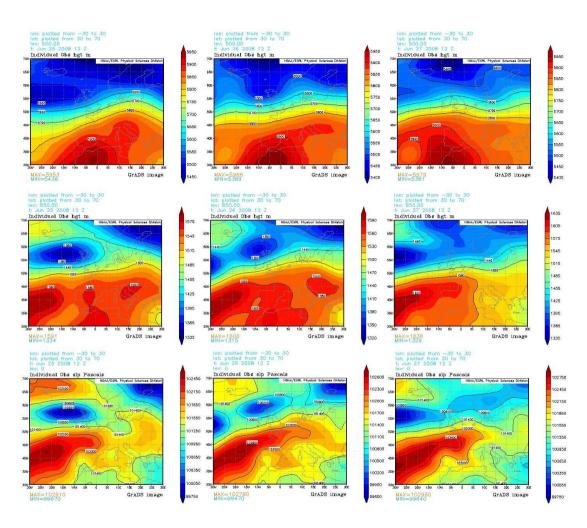


Figura 4a: Panel de la situación sinóptica a 500 hPa (fila superior), 850 hPa (fila central) y superficie (fila inferior) durante la jornada anterior (D-1; columna de la izquierda), central (D0; columna central) y posterior (D+1; columna de la derecha) a la superación del umbral de información el día 26 de junio de 2008

Informe final (40-53)

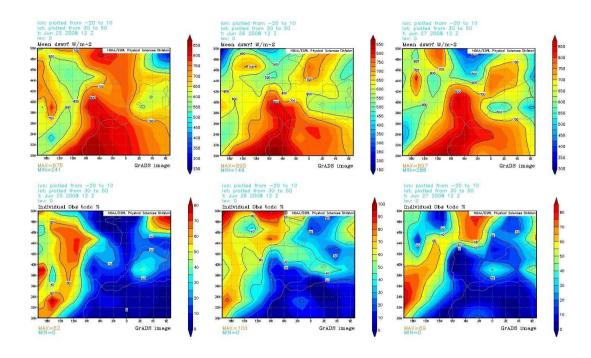


Figura 4b: Panel de radiación (fila superior) y cobertura total nubosa (filar inferior) durante la jornada anterior (D-1; columna de la izquierda), central (D0; columna central) y posterior (D+1; columna de la derecha) a la superación del umbral de información el día 26 de junio de 2008

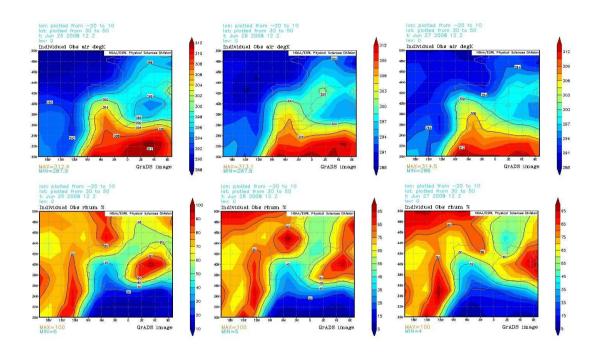


Figura 4c: Panel de la temperatura del aire (fila superior) y humedad (filar inferior) durante la jornada anterior (D-1; columna de la izquierda), central (D0; columna central) y posterior (D+1; columna de la derecha) a la superación del umbral de información el día 26 de junio de 2008

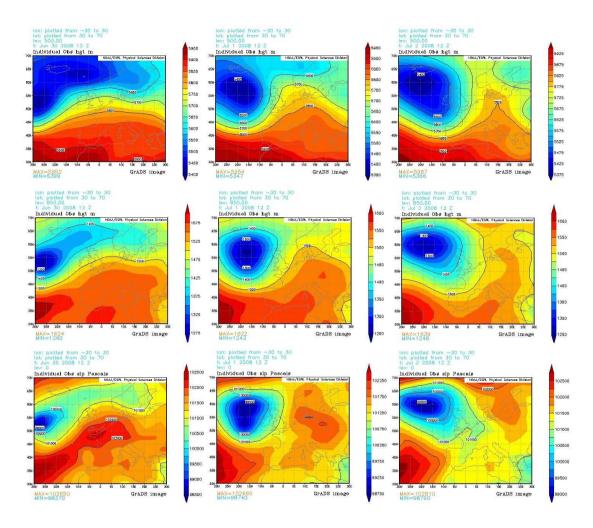


Figura 5a: Panel de la situación sinóptica a 500 hPa (fila superior), 850 hPa (fila central) y superficie (fila inferior) durante la jornada anterior (D-1; columna de la izquierda), central (D0; columna central) y posterior (D+1; columna de la derecha) a la superación del umbral de información el día 1 de julio de 2008

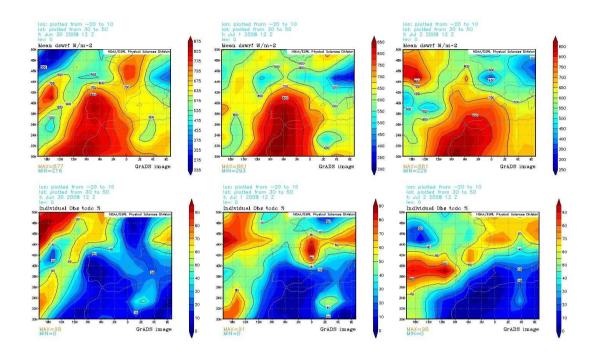


Figura 5b: Panel de radiación (fila superior) y cobertura total nubosa (filar inferior) durante la jornada anterior (D-1; columna de la izquierda), central (D0; columna central) y posterior (D+1; columna de la derecha) a la superación del umbral de información el día 1 de julio de 2008

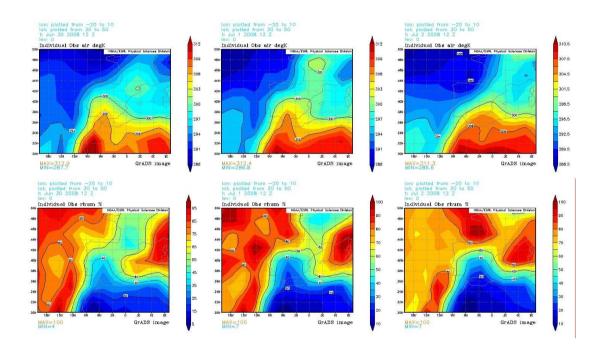


Figura 5c: Panel de la temperatura del aire (fila superior) y humedad (filar inferior) durante la jornada anterior (D-1; columna de la izquierda), central (D0; columna central) y posterior (D+1; columna de la derecha) a la superación del umbral de información el día 1 de julio de 2008

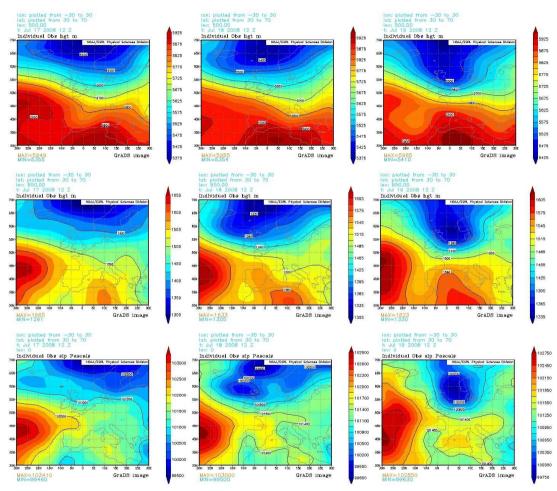


Figura 6a: Panel de la situación sinóptica a 500 hPa (fila superior), 850 hPa (fila central) y superficie (fila inferior) durante la jornada anterior (D-1; columna de la izquierda), central (D0; columna central) y posterior (D+1; columna de la derecha) a la superación del umbral de información el día 18 de julio de 2008

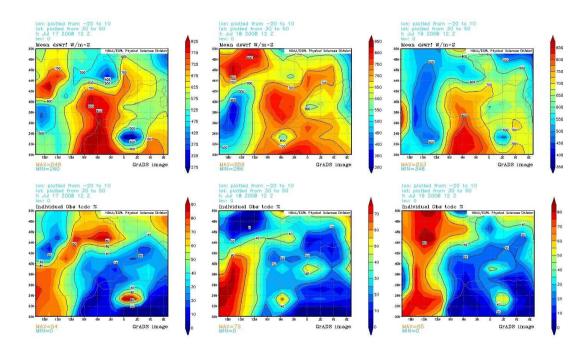


Figura 6b: Panel de radiación (fila superior) y cobertura total nubosa (filar inferior) durante la jornada anterior (D-1; columna de la izquierda), central (D0; columna central) y posterior (D+1; columna de la derecha) a la superación del umbral de información el día 18 de julio de 2008

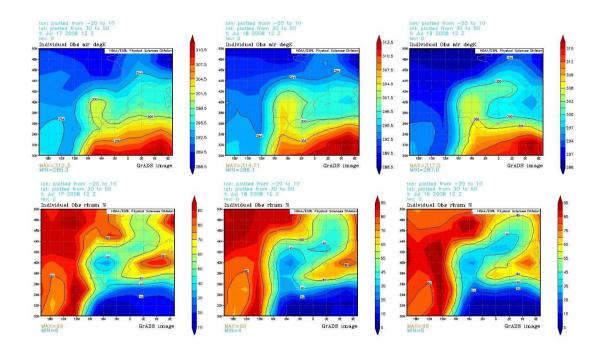


Figura 6c: Panel de la temperatura del aire (fila superior) y humedad (filar inferior) durante la jornada anterior (D-1; columna de la izquierda), central (D0; columna central) y posterior (D+1; columna de la derecha) a la superación del umbral de información el día 18 de julio de 2008

PREVIOZONO 2008 CONCLUSIONES

5. CONCLUSIONES

Al igual que en campañas anteriores, dentro del Programa de Vigilancia de Contaminación por Ozono Troposférico se han cumplido satisfactoriamente dos objetivos principales durante la campaña de Previozono 2008: (1) dar cobertura a los requerimientos en materia de información en caso de superación de los umbrales de información y/o alerta a la población, y (2) avanzar en el estudio de la dinámica del ozono troposférico en la vertiente levantina y de un modo particular en la Comunidad Valenciana.

Durante el transcurso del periodo de vigilancia (marzo a octubre) se ha informado a la población conforme a los requerimientos dispuestos en la normativa, tanto de los niveles de concentración máxima horaria como octohoraria, y de los valores promedio diarios. También se ha proporcionado, a través de la web del programa, información sobre los niveles de concentración, análisis de las situación que condujo a esos niveles, un pronóstico sobre la evolución en función de la situación atmosférica y las características de la cuenca mediterránea, y un mapa zonificado en 14 áreas cubriendo toda la Comunidad Valenciana en la que se informaba de la probabilidad de que se registrarse superación del umbral de información en las 24 horas siguientes.

5.1 Líneas futuras

El periodo de vigilancia se ha mostrado acertado durante los años anteriores, por lo que durante el desarrollo del programa de vigilancia del ozono troposférico 2008 se prevé una línea de trabajo similar. Se dividirá el periodo de vigilancia en dos subperiodos:

- Durante los meses de marzo, abril y octubre, en los que se realizará una vigilancia de las concentraciones, informando de la ocurrencia de superaciones del umbral de información y/o alerta.
- Durante los meses de mayo a septiembre, en los que se redactará diariamente un informe diario. Este informe constará, al igual que en años anteriores, de un análisis de la jornada y un pronóstico de la evolución de los niveles de ozono.

Algunas líneas de trabajo que se pretenden abordar durante la siguiente campaña de vigilancia, dentro del marco del Programa Previozono son:

- Continuación del estudio de la dinámica del ozono y de los episodios de elevada concentración de ozono. Poniendo especial hincapié en el estudio de los campos de viento (circulaciones de brisas marinas), y las condiciones meteorológicas.
- Durante el pasado año se ha trabajado en la puesta en marcha de un sistema de modelización del ozono troposférico basado en un modelo fotoquímico (CAMx) acoplado a un modelo meteorológico de alta resolución (MM5). Este

Informe final 58 (54-55)

sistema se ha puesto en funcionamiento en un cluster formado por 7 PC Quad Core con sistema operativo GNU/Linux. Durante el año 2009 se trabajará en la utilización de este modelo para el diagnóstico de las concentraciones de ozono en la Comunidad Valenciana.

De esta forma, durante el siguiente programa se continuará con las líneas de información y estudio abiertas en años anteriores, a la vez que se incorporan otras nuevas, con el objetivo de que se incremente el conocimiento de la dinámica del ozono.

6. AGRADECIMIENTOS

Nos gustaría, en primer lugar, agradecer a la Dirección General de Calidad Ambiental, especialmente a José V. Miró Bayarri, Rafael Orts, Miguel Poquet, Lucía Juan y Mercedes Tomás, del Servicio de Protección del Ambiente Atmosférico, la confianza que han depositado, un año más, en el personal de la Fundación CEAM para la elaboración del Programa Previozono.

En segundo lugar, dar las gracias al Departamento de Informática de la Fundación CEAM, por su ayuda en la solución de los problemas técnicos; al Área de Dinámica de Contaminantes, en particular a José Jaime Dieguez y Laura Padilla, por el trabajo de validación de los datos de calidad del aire de la RVVCCA; y al Departamento de Meteorología, especialmente a David Corell, encargado del mantenimiento y actualización de los datos de las torres meteorológicas.

BIBLIOGRAFÍA

- [1] Azorín, C., Castell, N., Mantilla, E., y Millán, M. M. 2008. Estudio de la relación entre la persistencia de las brisas marinas y los niveles de concentración de ozono en un punto del litoral de Alicante. En: Cambio climático regional y sus impactos. (Sigró, J., Brunet, M., and Aguilar, E., eds.): 725-736.: Publicaciones de la Asociación Española de Climatología. Serie A nº 6.
- [2] Azorín, C., Castell, N., Mantilla, E., Salvador, R. y Millán, M. M. 2008. Brisas marinas y contaminación fotoquímica por ozono en la cuenca del Mediterráneo Occidental: Alicante. En: Actas del XI Congreso de Ingeniería Ambiental, 259-269.
- [3] Castell, N., Salvador, R., Mantilla, E., Stein, A.F, Millán, M. 2008. Modelización de la contribución de las emisiones biogénicas y antropogénicas en la superación de los umbrales normativos durante un episodio de contaminación fotoquímica en la Península Ibérica. En: Cambio climático regional y sus impactos. (Sigró, J., Brunet, M., and Aguilar, E., eds.): 619-628.: Publicaciones de la Asociación Española de Climatología. Serie A nº 6.
- [4] Castell, N., Salvador, R., Mantilla, E., Stein, A.F y Millán, M. 2008. Evolución de las emisiones de acidificadores, precursores de ozono y gases de efecto invernadero en el periodo 1990-2005 en España. Modelización fotoquímica de la reducción de precursores de ozono. En: Cambio climático regional y sus impactos. (Sigró, J., Brunet, M., and Aguilar, E., eds.): 771-778.: Publicaciones de la Asociación Española de Climatología. Serie A nº 6.
- [5] Castell, N., Stein, A., Salvador, R., Mantilla, E., and Millán, M. 2008. The impact of biogenic VOC emissions on photochemical ozone formation in a high ozone pollution episode in the Iberian Peninsula for the 2003 summer season. *Advances in Science and Research*, 2, 9-15.
- [6] Castell, N., Stein, A., Salvador, R., Mantilla, E., and Millán, M. 2008. Sensitivity analysis of surface ozone to modified initial and boundary conditions in both rural and industrial zones. *Advances in Science and Research*, 2, 113-118.
- [7] Mantilla, E., Castell, N., Salvador, R., Azorín, C., Millán, M., Miró, J.V., Juan, L. 2008. *Ozono troposférico y calidad del aire*. Edt. Generalitat Valenciana.
- [8] Mantilla, E., Castell, N., Salvador, R., Stein, A.F. and Millán M. 2006: Estimación del impacto fotoquímico debido a una nueva planta de producción eléctrica en un entorno complejo y con elevada presión industrial del suroeste de la Península Ibérica. *V Seminario de Calidad del Aire en España, 16-18 Octubre 2006.* Santander (Spain).
- [9] Mantilla, E., Castell, N., Salvador, R., Stein, A.F. and Millán M. 2007: Photochemical modeling analysis and of ozone impact from new Industrial Facilities in the Southwestern Iberian Peninsula. 6th International Conference on Urban Air Ouality. Chypre.